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Abstract—This paper is concerned with a communication-
efficient algorithm update scheme for solving distributed convex
optimization problems by introducing a distributed event-
triggered approach. Compared with real-time consensus-based
distributed optimization algorithms in the literature, this paper
focuses on extending the real-time gradient tracking scheme and
proposes a novel distributed event-triggering condition to reduce
the frequency of information exchange between agents in a
network. The proposed event-triggered approach for consensus-
based distributed optimization algorithms not only avoids the
real-time consecutive communication and the coordinated
computation between agents but reduces the computation load of
algorithm execution. Furthermore, the proposed event-triggering
condition depends on only local states from neighbors at only their
event times and does not require a global and homogeneous
sampling period. In addition, this paper analytically shows that
the proposed consensus-based distributed optimization algorithm
based on an event-triggered approach can also converge to the
exact optimal solution with a linear convergence rate even if the
real-time consecutive communication between agents is replaced
with sporadic communication.

Index Terms—Consensus-based distributed optimization, gra-
dient tracking, event-triggered approach, multi-agent networks.

I. INTRODUCTION

D ISTRIBUTED convex optimization problems arise in

various fields such as multi-vehicle cooperative con-

trol [1], [2], distributed filtering and estimation [3], [4], smart

grid implementation [5], [6], cloud computing and learning [7],

[8], and large-scale machine learning [9], [10]. To solve these

problems in a distributed manner, optimization algorithms

need to be designed using only local available information

based on local communication. That is, each agent in multi-

agent networks can use only its own private objective function

and can exchange state estimates only with its neighbors.

Regarding distributed optimization algorithms, gradient

descent methods have attracted increasing attention due to its

high efficiency and easy implementation in recent years. For

gradient descent methods, there are at least two main strate-

gies: the consensus strategy and the diffusion strategy. Exist-

ing works on consensus strategy include the subgradient

method [11], [12], the stochastic subgradient projection

method [13], [14], the fast subgradient method [15] and the

subgradient-push method [16], [17]. Existing works on diffu-

sion strategy can be found in [18], [19], which employ a sym-

metric iteration update instead of an asymmetric one

compared with the consensus strategy. However, the above

works on both strategies all suffer a dilemma that the iteration

converges to an exact solution slowly when a diminishing step

size is used. It converges faster when a fixed step size is con-

sidered but only stalls at a neighborhood of the exact solution.

To overcome this dilemma, an EXTRA algorithm is proposed

in [20], which can converge to the exact optimal solution with

a linear rate even though a fixed and large step size is used.

The EXTRA algorithm is actually a modified implementation

of the consensus strategy. Instead of directly using a subgra-

dient, EXTRA employs the difference of the subgradients at

the last two iterates to approximate the global gradient and

then uses the last two iterates’ solution estimates to update the

current solution estimate. Motivated by the idea of EXTRA,

a DEXTRA algorithm for directed graphs is developed

in [21] and an exact diffusion algorithm is developed in [22].

Independently, an Aug-DGM algorithm based on the Adapt-

then-Combine strategy in [18], [19] and the average consen-

sus strategy in [23] are developed in [24]. The Aug-DGM

algorithm not only employs uncoordinated step sizes for dif-

ferent agents but can produce an exact optimal solution with

a satisfactory convergence rate. Similar to [24], a DIGing

algorithm based on the combination of the distributed subgra-

dient method and the dynamic average gradient tracking

technique is developed in [25]. The DIGing algorithm differs

from Aug-DGM mainly in the gradient tracking update. That

is, DIGing employs a direct and simpler scheme instead of

the Adapt-then-Combine scheme in Aug-DGM. It is worth

emphasizing that the DIGing algorithm can ensure that all

agents in a network converge to the exact optimal solution

linearly with a fixed step size.
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The aforementioned standard optimization algorithms,

however, have some common limitations as follows. To begin

with, the information exchange between agents is real-time

and frequent. That is, each agent has to collect and broadcast

solution estimates from/to all its neighbors at every point of

sampling time, which is obviously inefficient and has to pos-

sess much expensive communication bandwidth. Furthermore,

it is supposed that all agents are able to complete their local

computations synchronously and then synchronously transmit

local results to their neighbors at each time instant. However,

this assumption is not realistic because the data flow, commu-

nication status, and computation abilities of agents often vary

in a heterogeneous network. As a result, the synchronization

of the computation and communication abilities between

agents might not be accomplished in a real network environ-

ment. Actually, the overall efficiency of a distributed optimi-

zation algorithm mainly depends on communication

efficiency rather than computation efficiency because the time

consumption of communication between computing nodes is

far more than that of computation in a distributed computing

network system. Therefore, it is interesting to seek a commu-

nication-efficient optimization approach to make sure that the

real-time consecutive communication and the coordinated

computation between agents can be avoided.

The event-triggered approach provides a new perspective

on how to collect and transmit information between agents in

an interactive network [26], [27]. The early works introducing

the event-triggered approach to the field of convex optimiza-

tion can be found in [28], [29], where the communication cost

is reduced effectively by employing an event-triggering condi-

tion to determine whether the local state information should be

transmitted or not. However, the proposed event-triggered

optimization approaches are actually based on a centralized

idea because the augmented Lagrangian method in [28] and

the gradient descent method in [29] are both centralized and

both require that each agent know all other agents’ state esti-

mates to update its own state estimate even though the compu-

tation load can be distributed among different computing

nodes. More recently, some distributed asynchronous optimi-

zation algorithms based on the randomized alternating direc-

tion method of multipliers (ADMM) are proposed in [30],

[31]. But the computation cost of the proposed algorithms is

expensive since there is at least one optimal solution that

needs to be solved in the execution of each iteration. Further-

more, some works including [32]–[34] investigated event-

triggered optimization schemes based on (sub)gradient meth-

ods with time-varing or constant stepsizes, however, they all

inevitably suffer a dilemma between convergence rate and

convergence accuracy. Also, event-triggered communication

schemes for particle swarm optimization, communication-

constrained optimization and optimal control can be found

in [35]–[37]. In particular, the work in [38] extended the con-

sensus-based distributed optimization algorithm in [25] with a

distributed event-triggered optimization approach, which uti-

lizes the state estimates of the event times instead of that of

the real time to update local results. However, the proposed

event-triggering condition is not satisfactory because it

depends on a global time-varying threshold and the key

parameters not only depend on the global communication

topology but they are sensitive to all agents’ initial states and

measurement errors.

The aim of this paper is to develop a communication-effi-

cient optimization approach for the consensus-based distrib-

uted optimization algorithm (also named as DIGing

algorithm) in [25] based on an event-triggered control strategy

to avoid the real-time consecutive communication and the

synchronous state fusion among different agents effectively.

Compared with existing works in [25], [38], we still focus on

an extended DIGing algorithm based on event times instead of

the real time in the communication network. However, a sig-

nificant challenge is how to design a proper event-triggering

condition that relies on only local states from neighbors at

only their sporadic event times instead of the real time such

that the real-time information collection of the network can

also be avoided in the implementation of the event-triggering

condition. Moreover, how to give a theoretical analysis to

show the feasibility of the proposed event-triggering condition

is another main challenge.

The contribution of this paper is to develop an event-trig-

gered communication-efficient control strategy for the consen-

sus-based distributed optimization algorithm and design a

novel distributed event-triggering condition. The proposed

control strategy gives an event-triggered solution on the track-

ing of both gradient and state aggregations so that the informa-

tion exchange between agents can be non-real time and more

efficient. The proposed event-triggering condition depends on

only local states from neighbors at only their sporadic event

times, which implies that the real-time information collection

and the coordinated computation between agents are avoided

not only in the update of the iteration algorithm but in the

implementation of the event-triggering condition. Further-

more, the selections of the key parameters are simple and their

upper bounds are independent of the initial states and the mea-

surement errors. In addition, the convergence analysis is given

to show that the extended DIGing algorithm can still converge

to the exact optimal solution with a linear convergence rate

under the proposed event-triggering condition.

This paper is organized as follows: Section II introduces

some necessary preliminary knowledge about notation, graph

theory, and the DIGing algorithm; Section III introduces a dis-

tributed event-triggered approach to the DIGing algorithm;

Section IV presents the main theorem and convergence analy-

sis; Section V provides some numerical simulations to illus-

trate the main theorem; Section VI concludes the paper.

II. PRELIMINARIES AND BACKGROUND

A. Notation

The notations throughout this paper are defined as follows.

The set of all real numbers and real vectors with p dimensions

are denoted by R and Rp, respectively. The 1 vector and 0

vector containingN entries are denoted by 1N and 0N , respec-

tively. Let I be a unit matrix. Let jjvjj and jjAjj represent the
Euclidean norms of a vector v and a matrix A, respectively.
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The transposes of a vector v and a matrix A are denoted by vT

and AT , respectively. For a matrix A, the maximum singular

value is denoted by smaxðAÞ. For any function fðxÞ, the gradi-
ent of f at x is denoted by rfðxÞ. For an infinite sequence

si ¼ fsið0Þ; sið1Þ; sið2Þ; . . .g, denote jjsijj�;K ¼ maxt¼0;1;...;K
1
�t
jjsiðtÞjj and jjsijj� ¼ supt�0

1
�t
jjsiðtÞjj with � 2 ð0; 1Þ.

B. Graph Theory

Define G ¼ fV; E; Ag as an undirected graph composed of

N nodes, where V ¼ fv1; v2; . . .; vNg is the node set, E �
V � V is the edge set and A ¼ ðaijÞ 2 RN�N is the adjacency

matrix of G. An edge eji ¼ ðvj; viÞ represents that the informa-

tion from node j can arrive to node i directly. Here the adja-

cency matrix A is symmetric. That is, the communication

channels between nodes in a network are two-way. If there is

a two-way communication channel between node i and node

j, then they are called neighbors of each other and accordingly

aij ¼ aji ¼ 1; otherwise, aij ¼ aji ¼ 0. The set of neighbors

of node i is denoted by N i. Let N and Ni ¼ jN ij denote the

number of all nodes and the number of neighbors of node i in
a network, respectively. The Laplacian matrix of A is defined

as L ¼ ðlijÞ 2 RN�N , where lij ¼ �aij; i 6¼ j and lii ¼PN
j¼1;j6¼i aij. Here L is a symmetric positive semidefinite

matrix. A square matrix W ¼ ðwijÞ with nonnegative real

numbers is called doubly stochastic if the sums of each row

and each column both equal to 1, i.e.,
P

i wij ¼
P

j wij ¼ 1.

C. DIGing Algorithm

This subsection briefly reviews the consensus-based distrib-

uted optimization algorithm proposed in [25], which is also

named as DIGing algorithm by [25]. Consider the following

distributed unconstrained optimization problem

min
x2Rp

fðxÞ ¼ 1

N

XN
i¼1

fiðxÞ; (1)

where the global cost function fðxÞ is separable and each local
cost function fiðxÞ is convex, differentiable and only available
to agent i.

To solve the problem ð1Þ with a distributed computation

method, the DIGing algorithm exhibits good performance on

iteration complexity, convergence accuracy and convergence

rate because DIGing is not only a simple first-order algorithm

but it can converge to the exact optimal solution with a linear

convergence rate. The DIGing algorithm executes the follow-

ing updates at each iteration [25]:

xiðtþ 1Þ ¼ xiðtÞ þ huiðtÞ � ayiðtÞ; yiðtþ 1Þ
¼ yiðtÞ þ hviðtÞ þ rfiðxiðtþ 1ÞÞ � rfiðxiðtÞÞ;

(2)

where xiðtÞ 2 Rp is the solution estimate, yiðtÞ 2 Rp is the

average gradient estimate, h is a positive control gain, a is a

fixed step size and the auxiliary variables uiðtÞ and viðtÞ are
defined as follows:

uiðtÞ ¼
X
j2N i

aij xjðtÞ � xiðtÞ
� �

;

viðtÞ ¼
X
j2N i

aij yjðtÞ � yiðtÞ
� �

: (3)

At each iteration time tþ 1, each agent i first calculates the
auxiliary variables uiðtÞ and viðtÞ utilizing its own previous

xiðtÞ and yiðtÞ and the received xjðtÞ and yjðtÞ from its neigh-

bors to complete the state fusion. Then, each agent i updates
the current solution estimate xiðtþ 1Þ utilizing the previous

xiðtÞ and auxiliary variable uiðtÞ at the direction of �yiðtÞ.
Also, each agent i updates the current average gradient esti-

mate yiðtþ 1Þ utilizing the previous yiðtÞ, auxiliary variable

viðtÞ and the gradient-difference term rfiðxiðtþ 1ÞÞ �
rfiðxiðtÞÞ. Finally, each agent i broadcasts its current solu-

tion estimate xiðtþ 1Þ and average gradient estimate yiðtþ
1Þ to all its neighbors and meanwhile receives the solution

estimate xjðtþ 1Þ and the average gradient estimate yjðtþ 1Þ
from its neighbors.

III. PROBLEM STATEMENT AND ALGORITHM DESIGN

This section mainly focuses on how to introduce the event-

triggered approach to the DIGing algorithm. Though the pro-

posed DIGing algorithm in [25] exhibits good performance on

iteration complexity, convergence accuracy and convergence

rate, DIGing has to face a fact that the iteration is based on the

real-time communication and the coordinated state fusion.

That is, each agent has to broadcast its own state estimate and

collect all its neighbors’ state estimates at each time instant,

and then complete the state fusion at the same time with other

agents, which implies that each agent has to deal with heavy

communication and computation load. Thus, it is interesting

to design a more efficient control approach for DIGing to

avoid the real-time communication and the coordinated state

fusion.

A. Extended DIGing Based on an Event-Triggered Approach

The event-triggered approach provides a new perspective for

the iteration update of the consensus-based distributed optimi-

zation algorithm. Before introducing the event-triggered

approach, we first define a sequence f0 ¼ ti0; t
i
1; t

i
2; . . .g for the

sporadic event times of agent i. Besides, we suppose that each
agent in a network can only receive the state estimates from its

neighbors at their event times. As a result, the real-time conse-

cutive state exchange is not available in a network. Therefore,

the auxiliary variables uiðtÞ and viðtÞ in ð3Þ are redesigned by

using the state estimates at only event times as follows:

uiðtÞ ¼
X
j2N i

aij xjðtjkjÞ � xiðtikiÞ
� �

; viðtÞ

¼
X
j2N i

aij yjðtjkjÞ � yiðtikiÞ
� �

; t 2 ½tiki ; tikiþ1Þ; (4)

where ki ¼ arg minl2N;t > ti
l
ft� tilg denotes agent i’s latest

event number. xiðtikiÞ and yiðtikiÞ represent the solution esti-

mate and the average gradient estimate of agent i at its latest
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event time, respectively. Also, xjðtjkjÞ and yjðt
j
kj
Þ represent the

solution estimates and the average gradient estimates received

from the neighbors of agent i at their latest event times,

respectively.

Compared with the original forms in Eq. (3), the redesigned

auxiliary variables uiðtÞ and viðtÞ in ð4Þ mainly depend on the

state estimates at the latest event time instead of the real time

and are responsible for state fusion with less communication

and computation cost. Specifically, in time interval t 2
½tiki ; tikiþ1Þ, if there is no event occurring from itself or its

neighbors, the computation of uiðtÞ and viðtÞ still utilizes the
existing state estimate xiðtÞ; yiðtÞ; xjðtÞ; yjðtÞ at the latest

event time t ¼ tiki and t ¼ tjkj . Once an event occurs at agent

i, the agent broadcasts the state estimates xiðtikiÞ and yiðtikiÞ to
its neighbors; otherwise, the agent remains silent. In other

words, the auxiliary variables uiðtÞ and viðtÞ will remain con-

stant in the time interval ½tiki ; tikiþ1Þ until a new event time

tikiþ1 comes at agent i or agent i receives at least one new state

estimate from its neighbors.

To clearly describe the communication process of the

extended DIGing with the event-triggered approach, a detailed

communication algorithm is provided in Algorithm 1. Suppose

that each agent i is equipped with a local memory, which is

used to store the solution estimates xiðtÞ; xiðtikiÞ, the average

gradient estimates yiðtÞ; yiðtikiÞ and the received latest state

estimates xjðtjkjÞ; yjðt
j
kj
Þ from its neighbors. Furthermore, the

initial states of all agents are given by xð0Þ ¼ ðx1ð0Þ; . . . ;
xNð0ÞÞT , yð0Þ ¼ ðy1ð0Þ; . . . ; yNð0ÞÞT ¼ ðrf1ðx1ð0ÞÞ; . . . ;
rfNðxNð0ÞÞÞT and the initial event time ti0 for each agent i is
initialized to 0. After the initialization is completed at each

agent i, the agent begins to execute Algorithm 1.

Note that the event-triggered strategy plays an important

role in avoiding real-time consecutive communication and the

frequent updates of auxiliary variables. As we can see, agent i
broadcasts its own state estimate to its neighbors only at its

event time. That is to say, if there is no event at the current

time t, the current real-time state estimates xiðtÞ; yiðtÞ will not
to be broadcast even though their computations have been

completed at agent i. Furthermore, agent i updates the latest

state estimates and auxiliary variables using its own or its

neighbors’ latest state estimates only if the agent detects that

an event occurs or some messages from its neighbors are

received. Consequently, the extended DIGing with an event-

triggered approach avoids the real-time consecutive communi-

cation and the coordinated calculation compared with the

existing real-time DIGing algorithm in [25]. It is worth noting

that the extended DIGing algorithm still needs to depend on

global time coordination even though the information

exchange between agents is asynchronous since the iteration

of the algorithm is based on a global time clock. Next, we will

discuss how to judge if an event occurs or not in Algorithm 1

by introducing a novel distributed event-triggering condition.

B. A Distributed Event-Triggering Condition

Define two measurement errors associated with the solution

estimate and the average gradient estimate as follows

exi ðtÞ ¼ xiðtikiÞ � xiðtÞ; eyi ðtÞ ¼ yiðtikiÞ � yiðtÞ: (5)

Actually, ð5Þ basically describes the degree that the state esti-

mates at the latest event time deviate from the state estimates

at the current time. In practice, some thresholds are usually

specified for the measurement errors exi ðtÞ and eyi ðtÞ in

advance. Once the threshold is reached, an event is triggered

and the measurement errors exi ðtÞ and eyi ðtÞ are both reset to

zero because exi ðtÞ ¼ xiðtikiÞ � xiðtikiÞ ¼ 0; eyi ðtÞ ¼ yiðtikiÞ�
yiðtikiÞ ¼ 0 at the event time t ¼ tiki .

Substituting ð4Þ and ð5Þ into ð2Þ, the iteration ð2Þ can be

rewritten in a compact form as follows:

xðtþ 1Þ ¼ WxðtÞ � hLexðtÞ � ayðtÞ; yðtþ 1Þ
¼ WyðtÞ � hLeyðtÞ þ rfðxðtþ 1ÞÞ � rfðxðtÞÞ;

(6)

where W ¼ I � hL, xðtÞ ¼ ðx1ðtÞ; . . . ; xNðtÞÞT ; yðtÞ ¼
ðy1ðtÞ; . . . ; yNðtÞÞT , exðtÞ ¼ ðex1ðtÞ; . . . ; exNðtÞÞT ; eyðtÞ ¼

Algorithm 1. The communication and control processes of the

event-triggered DIGing algorithm

1: Initializes and broadcasts xiðti0Þ; yiðti0Þ to neighbors
2: repeat

3: Detects if a message is received or not

4: if a message from neighbor j is receivedthen
5: updates the state estimates xjðtjkjÞ; yjðt

j
kj
Þ

6: updates auxiliary variables uiðtÞ and viðtÞ

uiðtÞ ¼
X
j2N i

aijðxjðtjkjÞ � xiðtikiÞÞ;

viðtÞ ¼
X
j2N i

aijðyjðtjkjÞ � yiðtikiÞÞ:

7: else

8: keeps local memory constant

9: end if

10: Updates state estimates xiðtþ 1Þ and yiðtþ 1Þ

xiðtþ 1Þ ¼ xiðtÞ þ huiðtÞ � ayiðtÞ;
yiðtþ 1Þ ¼ yiðtÞ þ hviðtÞ

þ rfiðxiðtþ 1ÞÞ � rfiðxiðtÞÞ:

11: Judges if an event occurs or not

12: if an event occurs at agent ithen
13: updates the latest event time: tiki ¼ tþ 1
14: updates state estimates xiðtikiÞ; yiðtikiÞ
15: updates auxiliary variables uiðtÞ and viðtÞ
16: broadcasts xiðtikiÞ; yiðtikiÞ to neighbors
17: else

18: keeps local memory constant

19: keeps silent

20: end if

21: t ¼ tþ 1
22: until stop condition satisfies
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ðey1ðtÞ; . . . ; eyNðtÞÞT , and rfðxðtÞÞ ¼ ðrf1ðx1ðtÞÞ; . . . ;rfN
ðxNðtÞÞÞT .

Before introducing our event-triggering condition, we first

give the existing event-triggering condition proposed in [38]

as follows:

tikiþ1 ¼ inf t 2 N; t > tiki jjjexi ðtÞjj þ jjeyi ðtÞjj � C�t
n o

: (7)

Although this condition can avoid the real-time communica-

tion and synchronous state fusion, there exist several issues in

practical implementation: i) the event-triggering threshold on

the right of ð7Þ is a time-varying diminishing function, which

implies that this threshold heavily depends on the time param-

eter; ii) the selection of the parameter � depends on not only

the global communication topology but the objective func-

tions of all agents; iii) it is quite challenging to choose an

appropriate parameter C because C not only depends on all

agents’ objective functions but it is also sensitive to agents’

initial states and measurement errors. In a word, the event-trig-

gering condition proposed in [38] has some limitations on the

selections of the key parameters and might not apply to vari-

ous network environments effectively.

Next, our goal is to develop a novel distributed event-trigger-

ing condition such that it has good performance on robustness

and easy implementation for various network environments.

Since the available states to each agent are those state estimates

from neighbors at only their event times, the ideal event-trigger-

ing condition should be computed by using only these sporadic

state estimates. Thus, we propose an alternative event-triggering

condition as follows

tikiþ1 ¼ inf t 2 N; t > tiki jmax g1ðexi Þ; g2ðeyi Þ
� � � 0

n o
; (8)

where

g1ðexi Þ ¼ jjexi ðtÞjj2 � g1h
X
j2N i

jjxjðtjkjÞ � xiðtikiÞjj
2;

g2ðeyi Þ ¼ jjeyi ðtÞjj2 � g2h
X
j2N i

jjyjðtjkjÞ � yiðtikiÞjj
2: (9Þ

It is worth emphasizing that the event-triggering condition ð8Þ
is time invariant and its computation depends on only local states

available to each agent. Furthermore, the computation of the sec-

ond term on the right of ð9Þ is piecewise constant even though the
computation of themeasurement errors is real time, which implies

that the implementation of the event-triggering condition does not

need to rely on the real-time consecutive states from neighbors.

As will be shown in the next section, the selections of the parame-

ters g1 and g2 are simple and their upper bounds are independent

of agents’ initial states and measurement errors. In addition, we

should emphasize that Zeno behaviors will not happen in the

extended DIGing with the event-triggered approach. As for the

Zeno behavior, it describes a unique phenomenon for a hybrid

system, where an infinite number of discrete transitions occur in a

finite length of time. As we can see, the extended DIGing algo-

rithm ð2Þ with ð4Þ is based on a discrete-time iteration, which

implies that the system we study is a discrete-time one rather than

a hybrid one. Even if in the worst-case scenario (the event occurs

on every point of sampling time), the time interval between two

adjacent events is actually one sampling time interval. That is, the

number of events in a finite length of time is always bounded in

the proposed event-triggered DIGing algorithm.

Note that the storage requirements are very limited in prac-

tical terms. To be specific, the variables xiðtikiÞ; yiðtikiÞ,
exi ðtÞ; eyi ðtÞ, xjðtjkjÞ; yjðt

j
kj
Þ; j 2 N i for each agent i need addi-

tional storage space compared with the traditional DIGing

algorithm. In other words, the total storage requirements

for each agent increase about two times compared with

original storage requirements involving variables xiðtÞ; yiðtÞ,
xjðtÞ; yjðtÞ; j 2 N i. It is worth pointing out that the required

storage space for each variable is trivial since it only takes 8

Bytes (64 bits) space even though each variable uses a double-

precision format in a computer. Therefore, it is more worthy

to focus on the problems of computation and communication

instead of storage problems.

IV. MAIN RESULTS

In this section, we first give some assumptions regarding

coupling matrices and objective functions and then provide our

main result that the extended DIGing algorithm ð2Þ with the

auxiliary variable ð4Þ can converge to the exact optimal solu-

tion linearly under the proposed event-triggering condition ð8Þ.
Assumption 1 (Connectivity): Suppose that the undirected

graph G is connected.

Assumption 2 (Smoothness): Each objective function fi is
‘i-smooth where ‘i > 0. That is, fi is differentiable and the

gradient is ‘i-Lipschitz continuous, i.e.,

jjrfiðxÞ � rfiðyÞjj � ‘ijjx� yjj; 8x; y 2 R:

Define �‘ ¼ 1
N

PN
i¼1 ‘i and ‘̂ ¼ maxNi¼1f‘ig, which will be used

later.

Assumption 3 (Strong 100.onvexity): Each objective func-

tion fi satisfies

fiðxÞ � fiðyÞ � rfiðyÞT ðx� yÞ þ mi

2
jjx� yjj2

for some mi > 0 and any x; y 2 R. Define �m ¼ 1
N

PN
i¼1 mi

and m̂ ¼ maxNi¼1fmig, which will be used later.
To obtain the main result, we first give some key lemmas so

that the main result can be derived clearly. Before giving the

lemmas, we first state some necessary notations that will be

used frequently in the next analysis. Define

�xðtÞ ¼ 1

N

XN
i¼1

xiðtÞ; �yðtÞ ¼ 1

N

XN
i¼1

yiðtÞ;

x̂ðtÞ ¼ xðtÞ � 1N �xðtÞ; ŷðtÞ ¼ yðtÞ � 1N �yðtÞ;
zðtÞ ¼ rfðxðtÞÞ � rfðxðt� 1ÞÞ; J ¼ 1

N
1N1

T
N:

Define x� as the globally optimal solution of the problem ð1Þ
and let

qðtÞ ¼ xðtÞ � 1Nx
�:
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Lemma 1 (Double Stochasticity): [20] Let Assumption 1

hold and let 0 < h < 1=d�, where d� ¼ maxNi¼1fdig and

di ¼
PN

j¼1 aij. Then matrix W ¼ I � hL is doubly stochastic

and
d ¼ smaxðW � JÞ < 1:

Lemma 2 (Small Gain Theorem): [25] Suppose that

s1; s2; . . . ; sm are sequences such that for all positive integers

K and for each i ¼ 1; . . . ;m, we have

jjsði mod mÞþ1jj�;K � ’ijjsijj�;K þ vi;

where ’1; . . . ;’m and v1; . . . ;vm are nonnegative constants

and satisfy 0 � Qm
i¼1 ’i < 1. Then,

jjs1jj� � 1

1�Pm
i¼1’i

� �Xm
i¼1

vi

Ym
j¼iþ1

’i:

Similarly, one can get the bound of jjsijj� for each

i ¼ 2; . . . ;m.

Lemma 3: Considering the event-triggering condition in

ð8Þ, we have for any g1; g2 2 ð0; 1
4 N2h

Þ that

jjexðtÞjj � b1jjx̂ðtÞjj; b1 ¼ 2 N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg1

1� 4 N2hg1

s
; (10aÞ

jjeyðtÞjj � b2jjŷðtÞjj; b2 ¼ 2 N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg2

1� 4 N2hg2

s
: (10bÞ

Proof: According to the event-triggering condition ð8Þ,
once the measurement error exi ðtÞ or eyi ðtÞ reaches a threshold
defined on the right of ð9Þ, an event is triggered and the mea-

surement errors exi ðtÞ and eyi ðtÞ are both reset to zero automati-

cally. Thus, the following inequalities can be guaranteed in the

implementation of the event-triggered approach

jjexi ðtÞjj2 � g1h
X
j2N i

jjxjðtjkjÞ � xiðtikiÞjj
2; (11aÞ

jjeyi ðtÞjj2 � g2h
X
j2N i

jjyjðtjkjÞ � yiðtikiÞjj
2: (11bÞ

From ð11aÞ, we have

jjexi ðtÞjj2 � g1h
X
j2N i

jjxjðtÞ þ exj ðtÞ � xiðtÞ � exi ðtÞjj2

¼ g1h
X
j2N i

jjx̂jðtÞ � x̂iðtÞ þ exj ðtÞ � exi ðtÞjj2

� 2g1h
X
j2N i

2ðjjx̂jðtÞjj2 þ jjx̂iðtÞjj2Þ þ 2ðjjexj ðtÞjj2 þ jjexi ðtÞjj2Þ
h i

� 4 Ng1hðjjx̂ðtÞjj2 þ jjexðtÞjj2Þ: (12Þ
Using a similar derivation in ð12Þ for ð11bÞ, we have

jjeyi ðtÞjj2 � 4 Ng2hðjjŷðtÞjj2 þ jjeyðtÞjj2Þ: (13)

Substituting jjexi ðtÞjj2; jjeyi ðtÞjj2 with jjexðtÞjj2; jjeyðtÞjj2 in

ð12Þ and ð13Þ, we further have

jjexðtÞjj2 � 4 N2g1hðjjx̂ðtÞjj2 þ jjexðtÞjj2Þ; (14aÞ
jjeyðtÞjj2 � 4 N2g2hðjjŷðtÞjj2 þ jjeyðtÞjj2Þ; (14bÞ

which is equivalent to ð10Þ. tu
Remark 1. Note that Lemma 3 not only establishes a con-

nection between the measurement errors exi ðtÞ; eyi ðtÞ and the

auxiliary variables x̂ðtÞ; ŷðtÞ but gives an upper bound for

parameters g1; g2 explicitly, which will play an important role

in improving the event-triggering efficiency. Generally speak-

ing, the frequency of the triggered events becomes lower

when the parameter g1 or g2 goes larger. In other words, larger

parameters g1; g2 will contribute to higher communication

efficiency. However, lower triggered frequency also might

lead to longer convergence time, which means that a trade-off

between communication efficiency and convergence time

might happen in practical implementation.

Lemma 4: [25] Let Assumption 2 hold. We have for any

K � 0 and � 2 ð0; 1Þ that

jjzjj�;K � ‘̂ð1þ 1=�Þjjqjj�;K:

Proof: See the proof of Lemma 5 in [25]. tu
Lemma 5: Let Assumption 1 hold. For g1 2 ð0; #

4 N2hð1þ#ÞÞ,
where # ¼ ð1�dÞ2

h2jjLjj2 , let � be such that dþ hb1jjLjj < � < 1.
We have for anyK � 0 that

jjx̂jj�;K � a

�� d� hb1jjLjj
jjŷjj�;K

þ �

�� d� hb1jjLjj
jjx̂ð0Þjj: (15)

Proof: According to Lemma 1, the matrix W is doubly sto-

chastic. Let Ĵ ¼ I � J . Then ĴW ¼ WĴ and JĴ ¼ 0.
According to ð6Þ and Lemma 3, we have

jjx̂ðtþ 1Þjj ¼ jjðI � JÞxðtþ 1Þjj
¼ jjĴWxðtÞ � hLexðtÞ � aĴyðtÞjj
� jjWĴxðtÞjj þ hjjLjj � jjexðtÞjj þ ajjĴyðtÞjj;
¼ jjðW � JÞx̂ðtÞjj þ hjjLjj � jjexðtÞjj þ ajjŷðtÞjj;
� ðdþ hb1jjLjjÞjjx̂ðtÞjj þ ajjŷðtÞjj: (16Þ

Multiplying ��ðtþ1Þ on both sides of ð16Þ yields

��ðtþ1Þjjx̂ðtþ 1Þjj � dþ hb1jjLjj
�

��tjjx̂ðtÞjj þ a

�
��tjjŷðtÞjj:

(17)

Taking the maximum over t ¼ 0; . . . ; K � 1 on both sides of

ð17Þ and considering �0jjx̂ð0Þjj � �0jjx̂ð0Þjj yield ð15Þ.
To ensure that there exists a � such that dþ hb1jjLjj <

� < 1 holds, dþ hb1jjLjj < 1 must be satisfied. Then we

further obtain
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g1 2 ð0; #

4 N2hð1þ #ÞÞ; (18)

where # ¼ ð1�dÞ2
h2jjLjj2 . The proof is completed. tu

Lemma 6: Let Assumption 1 hold. For g2 2 ð0; #
4 N2hð1þ#ÞÞ,

where # ¼ ð1�dÞ2
h2jjLjj2 , let � be such that dþ hb2jjLjj < � < 1.

Then we have for anyK � 0 that

jjŷjj�;K � �

�� d� hb2jjLjj
jjzjj�;K

þ �

�� d� hb2jjLjj
jjŷð0Þjj: (19)

Proof: We omit the proof since it is similar to that of

Lemma 5. tu
Remark 2. Note that the additional parameter constraint

g1; g2 2 ð0; #
4 N2hð1þ#ÞÞ compared with Lemma 3 implies that

the global topology information is needed because the parame-

ter # depends on the Laplacian matrix L. On the one hand, the

computation of the accurate upper bound still has to depend

on the global Laplacian matrix L, which is really worth study-

ing in the further work. On the other hand, the upper bound

only gives a reference on the selection of the parameter g1 or

g2. In practical terms, the operator might be more inclined to

select a conservative parameter g1 or g2 according to the

event-triggering efficiency if the global topology of a network

is not available.

Lemma 7: Suppose that Assumption 1, 2 and 3 hold and the

step size a and the parameter � satisfy

0 < a � 1

ð1þ hÞ�‘ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�mb

bþ 1

s
� � < 1:

Then we have for anyK � 0 that

jjqjj�;K � 1þ
ffiffiffiffiffi
N

p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘̂ð1þ hÞ

h�m
þ m̂b

�m

s0
@

1
Ajjx̂jj�;K

þ 2
ffiffiffiffiffi
N

p
jj�xð0Þ � x�jj; (20Þ

where b > 0 and h > 0 are free parameters.

Proof: Since W is doubly stochastic, multiplying 1
N 1TN on

both sides of the second equation of ð6Þ yields

�yðtþ 1Þ � 1

N
1TNrfðxðtþ 1ÞÞ ¼ �yðtÞ � 1

N
1TNrfðxðtÞÞ:

(21)

Considering yð0Þ ¼ rfðxð0ÞÞ, we further have

�yðtÞ ¼ 1

N
1TNrfðxðtÞÞ ¼ 1

N

XN
i¼1

rfiðxiðtÞÞ: (22)

Multiplying 1
N 1TN on both sides of the first equation of ð6Þ fur-

ther yields

�xðtþ 1Þ ¼ �xðtÞ � a
1

N

XN
i¼1

rfiðxiðtÞÞ: (23)

Under Assumption 1, 2 and 3, applying Lemma 8 in [25] to

ð23Þ yields

jj�x� x�jj�;K � 2jj�xð0Þ � x�jj þ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘̂ð1þ hÞ

h�m
þ m̂b

�m

s
jjx̂jj�;K;

(24)

where b > 0 and h > 0 are free parameters.

Since

qðtÞ ¼ xðtÞ � 1Nx
� ¼ xðtÞ � 1N �xðtÞ þ 1N �xðtÞ � 1Nx

�

¼ x̂ðtÞ þ 1Nð�xðtÞ � x�Þ;

it follows that

jjqjj�;K � jjx̂jj�;K þ
ffiffiffiffiffi
N

p
jj�x� x�jj�;K: (25)

Combining ð24Þ and ð25Þ, Lemma 7 follows. tu
Remark 3. Note that Lemma 7 actually provides a reference

for the upper bound of the estimation error implicitly when the

key parameters satisfy certain constraints. Furthermore,

Lemma 7 plays a key role in implementing the small gain the-

orem declared in Lemma 2 because it completes the final

closed circle of the small gain theorem together with the

above-mentioned Lemmas 4, 5 and 6. Now it is time to give

the main result more clearly as follows.

Theorem 1. Suppose that Assumption 1, 2 and 3 hold. For

any step size

a 2 0;
1:5ð1� dÞ2

�mk

 !
; (26)

where k ¼ 3‘̂
�m ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N‘̂=�m

q
Þ, the sequence fxðtÞg generated

by ð2Þ and ð4Þ under the event-triggering condition ð8Þ con-
verges to the vector 1Nx

� at a linear rate of Oð�tÞ if the fol-

lowing parameter constraint

g1; g2 2 0;
#

4 N2hð1þ #Þ
� �

(27)

is satisfied, where # ¼ ð1�dÞ2
h2jjLjj2 ; 0 < h < 1=d�; d� ¼

maxNi¼1fdig and di ¼
PN

j¼1 aij. Besides, the rate � is given by

� ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�m

1:5

r
;

ffiffiffiffiffiffiffiffiffi
a�mk

1:5

r
þ d

( )
: (28)
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Proof: Combining Lemmas 4, 5, 6 and 7, we have

jjzjj�;K � ’1jjqjj�;K þ v1;’1 ¼ ‘̂ð1þ 1=�Þ;
jjx̂jj�;K � ’2jjŷjj�;K þ v2;’2 ¼

a

�� d� hb1jjLjj
;

jjŷjj�;K � ’3jjzjj�;K þ v3;’3 ¼
�

�� d� hb2jjLjj
;

jjqjj�;K � ’4jjx̂jj�;K þ v4;’4 ¼ 1þ
ffiffiffiffiffi
N

p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘̂ð1þ hÞ

h�m
þ m̂b

�m

s
;

where v1 ¼ 0;v2 ¼ �
��d�hb1jjLjj jjx̂ð0Þjj;v3 ¼ �

��d�hb2jjLjj jjŷð0Þjj and v4 ¼ 2
ffiffiffiffiffi
N

p jj�xð0Þ � x�jj.
Applying Lemma 2 yields that jjqjj� is bounded when 0 <

’1’2’3’4 < 1, which is equivalent to

‘̂ 1þ 1

�

� �
a

�� d� hb1jjLjj
�

�� d� hb2jjLjj

� 1þ
ffiffiffiffiffi
N

p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘̂ð1þ hÞ

h�m
þ m̂b

�m

s0
@

1
A

< 1; (29)

where the parameters � and a satisfy the following constraints

dþ hb1jjLjj < � < 1; dþ hb2jjLjj < � < 1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�mb

1þ b

s
� � < 1; 0 < a � 1

ð1þ hÞ�‘ : (30)

To obtain a concise result, we set the free parameters b ¼
2‘̂=m̂ and h ¼ 1. Then it follows that

a � ð�� dÞ2

‘̂ð1þ �Þ �þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N‘̂=�m

q� � : (31)

Considering
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�mb

1þb

q
� � < 1 in ð30Þ, using 1þ 1=b � 1:5

yields

a � 1:5ð1� �2Þ
�m

: (32)

Thus, combining ð31Þ and ð32Þ yields

a 2 1:5ð1� �2Þ
�m

;
ð�� dÞ2

‘̂ð1þ �Þ �þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N‘̂=�m

q� �
2
664

3
775: (33)

Next we discuss the validity of the interval in ð33Þ. To sim-

plify the analysis, we here consider a smaller interval

a 2 1:5ð1� �2Þ
�m

;
1:5ð�� dÞ2

�mk

" #
; (34)

where k ¼ 3‘̂
�m ð1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
N‘̂=�m

q
Þ. Let b̂ ¼ maxfb1;b2g. When �

increases from dþ hb̂jjLjj to 1, the left-bound of the interval

in ð34Þ is monotonically decreasing while the right-bound is

monotonically increasing. In particular, when we choose

�� ¼
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð1� d2Þk

q
1þ k

; (35)

the left-bound and the right-bound of the interval in ð34Þ both
equal to

D ¼
1:5ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð1� d2Þk

q
� dkÞ2

�mkð1þ kÞ2 : (36)

Specifically, we can further verify that when � increases

from dþ hb̂jjLjj to ��, the lower bound of the left-bound

equals to the upper bound of the right-bound, that is,

1:5ð1� �2Þ
�m

2 D;
1:5 1� ðdþ hb̂jjLjjÞ2
� �

�m

2
4

3
5;

1:5ð�� dÞ2
�mk

2 1:5ðhb̂jjLjjÞ2
�mk

;D

" #
;

a 2 1:5ð1� �2Þ
�m

;
1:5ð�� dÞ2

�mk

" #
¼ ;;

which implies that when � 2 ðdþ hb̂jjLjj; ��Þ, the interval in

ð34Þ is invalid. On the other hand, when � increases from ��

to 1, the upper bound of the left-bound just equals to the lower

bound of the right-bound and they both equal to D, that is,

1:5ð1� �2Þ
�m

2 ð0;D	;

1:5ð�� dÞ2
�mk

2 D;
1:5ð1� dÞ2

�mk

" !
;

a 2 1:5ð1� �2Þ
�m

;
1:5ð�� dÞ2

�mk

" #
6¼ ;;

which implies that when � 2 ½��; 1Þ, the interval in ð34Þ is

valid and the corresponding interval is

a 2 0;
1:5ð1� dÞ2

�mk

 !
: (37)

Considering the constraint between a and � in ð34Þ, once
the step size a is given, the rate parameter � can be obtained

as follows

� ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�m

1:5

r
;

ffiffiffiffiffiffiffiffiffi
a�mk

1:5

r
þ d

( )
: (38)

Then Theorem 1 follows and the proof is completed. tu
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Remark 4. Regarding the selection of the step size a in Theo-

rem 1, the upper bound depends on a few of parameters d; �m; ‘̂.
To begin with, it is not very hard to determine the objective

parameters �m; ‘̂ once the objective functions are given since

the averaging and the maximum operations between neighbors

can be easily preprocessed by an algorithm for each agent.

Moreover, even if it is difficult to obtain the accurate value of

the parameter d without the global topology information of the

network, it is possible to evaluate a conservative bound for d.

For example, in the worst case, the bound d � 1� 1=N3 can

be used (see Remark 2 in [25]). Actually, some other better

bounds for different topology structures can be found in the

existing works [39], [40].

Remark 5. There are three points worth particular attention.

First, the convergence rate � in (28) is similar with the rate

� ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�m

1:5

q
;
ffiffiffiffiffiffiffiffi
a�mJ1
1:5

q
þ dg in the traditional DIGing

algorithm [25] and the key parameters g1 and g2 of the event-

triggered control approach have no direct impact on the linear

convergence rate �. Eq. (28) shows that the linear rate �
mainly depends on the step size a, network parameters N; d
and objective function parameters �m; ‘̂ instead of the event-

triggering control parameters g1 and g2, which implies that

the linear rate � is not affected even though an event-triggered

control approach is employed to reduce the communication

frequency between agents. Second, the parameters g1 and g2

in event-triggering condition (9) play a key role in reducing

communication frequency. To be specific, larger g1 and g2
will contribute to less communication because larger g1 and

g2 lead to a larger event-triggering threshold which conse-

quently produces larger time interval of communication. Thus

the proposed approach is able to adjust the communication

efficiency by changing the parameters g1 and g2 according to

practical requirements. Third, the convergence rate � has a direct

impact on the total number of iterations, however, there is no nec-

essary connection between the total number of iterations and the

communication frequency between agents. That is to say, the iter-

ation can be continued even if there is no communication happen-

ing between neighbors. In traditional algorithms, the iteration

updates are based on real-time communication data and every

iteration needs at least one time communication to exchange the

state estimates. In contrast, our work proves that the real-time

communication between neighbors is not necessary to drive the

iteration and the reuse of some old exchanged data can

effectively reduce communication frequency without compro-

mising convergence time and convergence accuracy.

V. SIMULATIONS

A. Decentralized Least Squares

Considering the following least squares problem

min
x2Rp

fðxÞ ¼ 1

2

XN
i¼1

jjAix� bijj2:

For each cost function fiðxÞ ¼ 1
2 jjAix� bijj2, we can obtain

that rfiðxÞ is Lipschitz continuous and fðxÞ ¼PN
i¼1 fiðxÞ is

strongly convex. We first consider the connected communica-

tion topology with N ¼ 5 agents shown in Fig. 1(a). For sim-

plicity, we choose x 2 R as a scalar and bi ¼ 2 for

i ¼ 1; . . . ; 3, bi ¼ 5 for i ¼ 4; 5 and Ai ¼ 1 for all i. Then we

can easily obtain the globally optimal solution x� ¼ 3:2. As
for control parameters, we set h ¼ 0:05;a ¼ 0:06; g1 ¼ g2 ¼
0:18 according to Theorem 1.

Fig. 2 shows the evolution of solution estimates of all agents,

from which we can see that the solution estimates in different

agents achieve an agreement asymptotically as the iteration goes

on. To show the convergence of the solution estimates, we define

the relative error jj�ðtÞjj ¼ jjxðtÞ � 1Nx
�jj to represent the rela-

tive distance between the solution estimates and the globally opti-

mal solution. Fig. 3 shows that the relative error converges to zero

asymptotically, which implies that the exact optimal solution can

be achieved as the iteration goes on. In Fig. 4, the events of all

agents are marked in time interval ½0; 350	, which shows that the
sampling of the event time is sporadic rather than consecutive. In

particular, the step size of each event is plotted in Fig. 5, which

shows that the event step size of each agent contains multiple

sampling time intervals.

To show the performance improvement of the extended

DIGing compared to the real-time DIGing, we run both algo-

rithms with the same parameters under the same stop condi-

tion jj�ðtÞjj ¼ jjxðtÞ � 1Nx
�jj � 0:0001 and obtain the

statistical data shown in Table I. We can conclude that the

extended DIGing has a large advantage on communication

rate (communication times divided by iteration times) com-

pared to the real-time DIGing because it can achieve the same

accuracy with lower communication rate (16.9% versus

100%) under similar total iterations (327 versus 359).

To show the impact of the parameters g1 and g2, we give

some statistical data in Table II (assume g1 ¼ g2). It can be

Fig. 1. The communication topology. (a) The network with 5 agents. (b) The
network with 10 agents.

Fig. 2. The evolution of solution estimates.
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seen that the larger parameters g1 and g2 lead to lower commu-

nication frequency (higher communication efficiency).

Besides, the parameter g1 or g2 can be greater than the upper

bound in Theorem 1, which implies that the theoretical upper

bound in Theorem 1 is more conservative than practical bound.

However, the agreement convergence cannot be achieved once

the parameters g1 and g2 are much larger than the upper bound,

which can be seen in Figs. 6 and 7. As for the step size a, the

performance impact of different a is shown in Table III. We

can see that the step size a mainly has an impact on the total

number of iterations that is related to the convergence rate �.
We also consider a larger communication network composed

of 10 agents as shown in Fig. 1(b). In this case, we set bi ¼ 2 for
i ¼ 1; . . . ; 6, bi ¼ 5 for i ¼ 7; . . . ; 10 andAi ¼ 1 for all i. Then
we can obtain the globally optimal solution x� ¼ 3:2. As for
control parameters, we set g1 ¼ g2 ¼ 0:045 according to Theo-
rem 1, h and a are the same as the case of 5 agents. Then we get

the simulation results as shown in Figs. 8–11. Note that the

upper bound of g1 or g2 is inversely proportional to the network

scaleN according to Theorem 1, which implies that larger net-

work scale will lead to a smaller upper bound.

The performance comparison between the real-time DIGing

and the extended DIGing in the case of 10 agents is shown in

Table IV. It can be seen that the extended DIGing still has a

large advantage on communication rate compared to the real-

time DIGing because it can achieve the same accuracy with

lower communication rate (16.4% versus 100%) under similar

total iterations (2504 versus 2541). We can also conclude that

the larger network scale will delay the final convergence espe-

cially when the connectivity of the network is not large

enough. However, the proposed event-triggered control strat-

egy is able to play a key role in reducing the communication

frequency even if the large network scale leads to increasing

iteration times.

Fig. 4. The event time of each agent i; i 2 1; . . . ; 5. Each X mark denotes an
event and each little dot denotes a sampling time.

Fig. 5. The event step size of each agent i; i 2 1; . . . ; 5. The height of each
vertical line denotes the number of sampling time intervals of an event step
size.

Fig. 6. The agreement cannot be achieved when g1 ¼ g2 ¼ 18:0.

Fig. 3. The error between solution estimates and the globally optimal
solution.

TABLE I
PERFORMANCE COMPARISON BETWEEN DIGING AND EXTENDED DIGING

TABLE II
THE PERFORMANCE IMPACT OF DIFFERENT PARAMETERS g1 AND g2

Fig. 7. The error between solution estimates and the globally optimal solu-
tion when g1 ¼ g2 ¼ 18:0.

TABLE III
THE PERFORMANCE IMPACT OF DIFFERENT STEP SIZE a
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B. Huber Loss Function

Considering the following decentralized cost function:

min
x2Rp

fðxÞ ¼ 1

N

XN
i¼1

Xmi

j¼1

HdðMðiÞjx� yðiÞjÞ
( )

;

whereMðiÞj is the j-th row of matrixMðiÞ and yðiÞj is the j-th row
of vector yðiÞ. TheHuber loss function is defined as follows:

HdðaÞ ¼
1
2 a

2; for jaj < d;
dðjaj � 1

2 dÞ; otherwise:

	

We first consider the network topology composed of 5 agents

shown in Fig. 1 (a). For simplicity, we also choose and yðiÞ 2
R as a scalar respectively and set mi ¼ 1;MðiÞj ¼ 1 for all i 2
f1; . . . ; 5g, yðiÞ ¼ 2 for i ¼ 1; . . . ; 3, yðiÞ ¼ 5 for i ¼ 4; 5.
Before we run the proposed extended DIGing algorithm, we

first obtain the practical optimal solution x� ¼ 2:6667 by run-

ning a centralized optimization algorithm (e.g., the gradient

descent algorithm). As for control parameters, we also set h ¼
0:05;a ¼ 0:06. But we set g1 ¼ g2 ¼ 1:8 that is greater than

the theoretical upper bound in Theorem 1 because this upper

bound is much more conservative than the practical bound

which can be inferred from Table II. Figs. 12 and 13 show that

the solution estimates of all agents asymptotically converge to

the global optimal solution. The event time and the event step

size of each agent are shown in Figs. 14 and 15, from which

we can see that the event step size is larger than that in Figs. 4

and 5. The performance comparison between DIGing and

Extended DIGing is given in Table V, from which we can see

that the communication efficiency is improved obviously

(14.5% versus 100%).

We then consider the network topology composed of 10 agents

shown in Fig. 1(b). We set mi ¼ 1;MðiÞj ¼ 1 for all i 2
f1; . . . ; 10g, yðiÞ ¼ 2 for i ¼ 1; . . . ; 6, yðiÞ ¼ 5 for i ¼
7; . . . ; 10. We first obtain the practical optimal solution x� ¼
2:6667 by running a centralized optimization algorithm. As for

control parameters, we set h ¼ 0:05;a ¼ 0:06; g1 ¼ g2 ¼ 0:18,
of which g1 ¼ g2 ¼ 0:18 is also larger than the theoretical upper
bound in Theorem 1. The results are shown in Figs. 16–19. The

performance comparison between DIGing and Extended DIGing

for Huber loss function in case of 10 agents is given in Table VI,

from which we can see that the communication efficiency is

improved obviously (9.0% versus 100%). It is worth nothing that

the larger g1 and g2 in Table V and Table VI lead to higher com-

munication efficiency compared with that in Table I and

Table IV, which can be also verified in Table II.

VI. CONCLUSION

We studied the distributed convex optimization problem

by extending the real-time DIGing algorithm to the event-

triggered DIGing algorithm in this paper. We developed a

novel distributed event-triggering condition to schedule the

information exchange between agents. This condition relies

on only local states from neighbors at only their event times,

which implies that the real-time consecutive communication

and the coordinated computation between agents are avoided

Fig. 8. The evolution of solution estimates in the case of 10 agents.

Fig. 9. The error between solution estimates and the globally optimal solu-
tion in the case of 10 agents.

Fig. 10. The event time of each agent i; i 2 1; . . . ; 10. Each X mark denotes
an event and each little dot denotes a sampling time.

Fig. 11. The event step size of each agent i; i 2 1; . . . ; 10. The height of each
vertical line denotes the number of sampling time intervals of an event step size.

TABLE IV
PERFORMANCE COMPARISON BETWEEN DIGING AND EXTENDED DIGING IN

CASE OF 10 AGENTS
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not only in the update of the algorithm iteration but in the

implementation of the event-triggering condition. Further-

more, the selections of the key parameters are simple and their

upper bounds are independent of agents’ initial states and

measurement errors. In addition, the convergence analysis

was given to show that the extended event-triggered DIGing

algorithm can also converge to the exact optimal solution with

a linear convergence rate under the proposed event-triggering

condition.
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