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Differentially Private Consensus With Quantized
Communication
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Abstract—This paper focuses on studying the differentially
private consensus problem in multiagent networks under a quan-
tized communication environment, where the exact real-value
state is not available for transmission due to the range limita-
tion of digital channels. We first extend the differentially private
consensus model to the case of a quantized communication envi-
ronment integrated with a dynamic encoding/decoding scheme
and propose a differentially private communication algorithm
utilizing the quantized state with a bounded quantizer instead of
the exact real-value state to reach an agreement while protecting
the initial or current states of the participants from information
disclosure. Then, the convergence analysis of mean square con-
sensus in the case of an unbounded quantizer is given to explain
the sufficiency of the extended model and convergence condi-
tions. To overcome the uncertainty of saturation in the case of
a bounded quantizer, we also give a statistical analysis on the
boundedness of quantization that the bounded quantizer with a
finite number of bits can remain unsaturated with a desired high
probability under certain conditions. Furthermore, we provide
the statistical analysis on the convergent accuracy, which shows
that the agreement value just converges to a random variable that
falls in the neighboring range of the initial state average and the
expectation of the agreement value is equal to the initial state
average exactly. In addition, we provide the differential privacy
analysis for individual agents and the whole network, and then
establish the potential relationship between the dynamic encod-
ing/decoding scheme and the differential privacy mechanism.
Finally, the simulation results visually show that the proposed
algorithm and the main theoretical results are effective and
correct.

Index Terms—Differential privacy, dynamic encoding/decoding
strategy, multiagent networks, quantized communication.
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I. INTRODUCTION

RECENT years have witnessed increasing attention in the
study of the distributed average consensus of multiagent

networks due to its broad applications in a large num-
ber of fields, such as cooperative control formation [1]–[3];
autonomous underwater vehicles [4], [5]; objective track-
ing [6]–[8]; distributed estimation [9], [10]; wireless sensor
networks [11], [12]; and sensor fusion [13], [14]. More
recently, it has also attracted much attention from the research
of load balancing of smart grids [15] or plug-in hybrid vehi-
cles [16], large-scale machine learning [17], and distributed
computation and optimization [18].

In the fields of privacy preservation, an individual agent in
a network may not want to disclose its sensitive information
(e.g., the initial state or the current state trajectory) when it
collaborates with other agents to complete a conjoint task. For
example, a group of unmanned vehicles collaborate with each
other to gather at a specified city while keeping their sen-
sitive initial locations private in the process of gathering. In
another example, a group of people intend to make a collec-
tive decision on some common subject by voting, but they also
want to keep their personal opinions private in the process of
voting [19]. To preserve the privacy of individuals, the differ-
ential privacy mechanism is introduced in [20] and [21], which
shows that the proposed differential privacy mechanism has
rigorous and proven security properties and its security is also
independent of the attack models of adversaries. Furthermore,
the differential privacy under continual observation is stud-
ied in [22], which promotes the study of the differentially
private average consensus in multiagent networks [23], [24].
Then researchers further introduce the differential privacy
mechanism into the study of filtering estimation [25] and the
distributed optimization [26]–[28].

Most of the literature on differentially private consensus
all assume, however, that the communication channels are
able to transmit the exact real-value states with no errors.
It is worth emphasizing that this assumption is unrealistic
because some digital devices, such as analog-to-digital and
digital-to-analog converters, discrete-level actuators and sen-
sors, and digital communication channels are often embedded
in real multiagent networks, which implies that the transmis-
sion of the exact real-value (analog) signal is not available.
Furthermore, digital signals possess obvious advantages on
robustness and security compared with analog signals. It is
interesting to study differentially private consensus under a
quantized communication environment where the information
exchange is based on quantized digital signals.
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Note that the quantized technology converting analog sig-
nals to digital signals is still an important topic in the study
of consensus due to the significant advantages of digital sig-
nals on robustness and security compared with analog signals.
Quantized consensus based on the integer-valued quantiza-
tion is investigated in [29] and the extended real-valued
quantization scheme can be found in [30]. Since the dis-
tributed averaging algorithm cannot achieve the strictly true
consensus when deterministic static uniform quantizers [29],
[30] are employed, dynamic quantization algorithm [31], [32]
and stochastic approximation methods [33], [34] are then
developed. Thereafter, a dynamic encoding/decoding scheme
is proposed in [35], which employs a pair of zoom-in
and zoom-out uniform encoders/decoders to deal with the
information exchange. Furthermore, a finite-level quantization
with a dynamic encoding/decoding scheme is proposed in [36],
which not only achieves the strictly true consensus but estab-
lishes a relationship between the convergence rate and the
communication data rate. To the best of our knowledge, even
if [36] focuses on the finite-level quantization for determin-
istic systems, most existing literatures on quantized average
consensus all suppose that the quantization input is bounded
or the quantizer always remains unsaturated. This assumption
might be possible for deterministic systems, but it is unreal-
istic for stochastic systems because the quantization input in
a stochastic system might grow unboundedly. For a stochastic
system, the bounded quantization is investigated in [37], which
provides a boundedness analysis of quantization from the sta-
tistical point of view. However, this paper only focuses on
the basic uniform quantizer without considering the advanced
dynamic encoding/decoding scheme.

The objective of this paper is to extend the results in
[23] and [24] to the case of a quantized communication
environment and explore the potential relationship between
the dynamic encoding/decoding scheme and the differential
privacy mechanism. As mentioned previously, the existing lit-
eratures on differentially private consensus most suppose that
the transmitted messages are the exact real-value states. On
the other hand, the existing works on quantized consensus do
not address the privacy issue. Therefore, we consider the dif-
ferentially private consensus problem where the information
exchange is based on the inexactly quantized (digital) data
instead of the exact real-value (analog) data. Note that this
extension is nontrivial and involves several issues. The first
challenge is how to analyze the extended differentially private
consensus model based on the quantized data to make sure
that both the convergent accuracy and the privacy level for
each agent can be well remained. Second, in the case of a
bounded quantizer, even if the initial states are bounded, the
quantization input in a quantizer might be unbounded in the
evolution of the algorithm due to the addition of Laplacian
noise and the presence of dynamic quantization factors. Once
the quantization input goes beyond the capacity of the bounded
quantizer, the quantizer will become overloaded and generate
an uncontrollable quantization error consequently. Thus, how
to overcome the uncertainty that the bounded quantizer with
a finite number of bits might become overloaded is another
challenge. Third, since the presence of Laplacian noise makes

a deterministic system be a stochastic one, the statistical anal-
ysis of the stochastic convergence process should be given by
employing some statistical characteristics. Finally, the relation-
ship between the dynamic encoding/decoding scheme and the
convergent accuracy or differential privacy should be discussed
in this paper. In particular, a recent work that has a close rela-
tionship with this paper is our previous one [38], which mainly
focuses on improving the communication efficiency of the dif-
ferentially private consensus by introducing an event-triggered
control strategy. It is worth emphasizing that the challenges in
the previous one are different from that of this paper. The
first challenge is how to combine the event-triggered control
strategy with the differentially private consensus algorithm to
remain the convergent accuracy and the privacy level for each
agent in a network. Furthermore, the redesign of the measure-
ment errors and the distributed event-triggering condition is
another challenge. In addition, how to design the fully dis-
tributed parameters for the event-triggering condition is also a
big challenge. In a word, the aims, the application scenarios
and the challenges are all different in the two papers.

The main contribution of this paper is that we success-
fully extend the differentially private consensus to the case
of a quantized communication environment, which ensures
that not only the sensitive information of individual agents
can be well preserved while achieving an agreement but
the exact real-value transmission is avoided. Specifically, we
first reformulate the differentially private consensus model
integrated with a dynamic encoding/decoding scheme for dig-
ital multiagent networks, where the transmitted message is a
quantized state instead of an exact real-value state. Second,
we propose a differentially private communication algorithm
utilizing the quantized data with a bounded quantizer to pro-
tect the initial or current states of participating agents from
information disclosure. Third, the theoretical analysis of mean
square convergence in the case of an unbounded quantizer is
given to explain the sufficiency of the extended model and con-
vergence conditions. To overcome the uncertainty of saturation
in the case of a bounded quantizer, we also give a statistical
analysis on the boundedness of quantization that the bounded
quantizer with a finite number of bits can remain unsaturated
with desired high probability under certain conditions. Fourth,
due to the presence of Laplacian random noise in the execu-
tion of the proposed algorithm, the final convergence point is
just a random variable instead of a deterministic point. Thus,
we establish the statistical analysis on the convergence accu-
racy, which shows that the agreement value just converges to
a random variable that falls in a neighbor range of the ini-
tial state average but the expectation of the agreement value
equals to the initial state average exactly. Finally, we provide
the differential privacy analysis for individual agents and the
whole network, which shows that any individual agent is able
to choose its own privacy level to keep its sensitive information
private independently. Besides, the relationship between the
dynamic encoding/decoding scheme and the differential pri-
vacy level is also established implicitly based on the parameter
constraints in the proposed theoretical results.

This paper is organized as follows. Section II introduces
some necessary preliminary knowledge about notation, graph
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theory, fundamental lemmas, the differentially private consen-
sus algorithm, and the dynamic encoding/decoding scheme.
Section III reformulates the problem model and introduces the
differentially private consensus algorithm utilizing the quan-
tized state in the case of a bounded quantizer. Section IV
establishes some main results, including the analysis of mean
square convergence, the probability bounds on the bounded-
ness of quantization, and the analysis of convergent accuracy
and differential privacy. Section V provides some simulations
to verify the main results. Finally, Section VI concludes this
paper.

II. PRELIMINARIES AND BACKGROUND

A. Notations

The standard notations used in this paper are summarized as
follows. The sets of natural numbers and positive integers are
denoted by N and N

+, respectively. The sets of real numbers
and real vectors with p dimensions are denoted by R and R

p,
respectively. For a given positive real number x, the maximum
integer not greater than x is denoted by �x�, and the minimum
integer not less than x is denoted by �x�. The absolute value
of a real number x is denoted by |x| and the Euclidean norms
of a vector v and a matrix A are, respectively, denoted by
||v|| and ||A||. A 1 vector and a 0 vector composed of N
elements are denoted by 1N and 0N , respectively. Let IN be
a unit matrix with N dimensions. Let vT and AT denote the
transposes of a vector v and a matrix A, respectively. Let P{X},
E[X], V[X], and f (X) represent the probability, the expectation,
the variance, and the probability density function of a random
variable X, respectively.

B. Graph Theory

An undirected graph composed of N nodes is denoted as
G = {V, E, W}, where V = {1, 2, . . . , N} denotes the node
set, E ⊆ V × V denotes the edge set, and W = (wij) ∈ R

N×N

denotes the adjacency matrix of undirected graph G. An edge
eji = (j, i) represents that the state information of node j can
arrive to node i directly. Because G is undirected, eij ∈ E
implies eji ∈ E . That is, there is a communication channel
between node i and node j, then node i and node j are neigh-
bors of each other and accordingly wij = wji > 0; otherwise,
wij = wji = 0. The neighbor set of node i is denoted by Ni and
the number of neighbors of node i is denoted by Ni = |Ni|.
The Laplacian matrix of W is defined as L = (lij) ∈ R

N×N ,
where lij = −wij, i 	= j and lii = ∑N

j=1,j 	=i wij. Here, L is a
symmetric positive semidefinite matrix and its eigenvalues are
denoted by 0 = λ1 ≤ λ2 ≤ · · · ≤ λN in an ascending order.

C. Fundamental Lemmas

The following lemmas will be used in our analysis through-
out this paper.

Lemma 1 [39]: For a given Laplacian matrix L associated
with the connected undirected graph G, if h < 2/λN , then

ρm = max
2≤i≤N

|1 − hλi| < 1.

Lemma 2 (Laplace Distribution [40]): For a given random
variable X, if it obeys a Laplace distribution Lap(μ, b), then
its probability density function is shown as follows:

L(x) = 1

2b
exp

(

−|x − μ|
b

)

where μ is a location parameter and b > 0 is a scale parameter.
Furthermore, we can obtain E[X] = μ and V[X] = 2b2.

Lemma 3 (Chebyshev’s Lemma [41]): Given a random vari-
able X, then for any non-negative function h(X) and constant
c > 0

P{h(X) ≥ c} ≤ E[h(X)]

c
.

In particular, let h(X) = |X|, then we get the Markov’s
inequality as follows:

P{|X| ≥ c} ≤ E[|X|]
c

.

Furthermore, suppose that X is a random variable with finite
expectation μ and finite variance σ 2, for h(X) = (X −μ)2 and
c = k2σ 2, then the Chebyshev’s inequality is given

P{|X − μ| ≥ kσ } ≤ 1/k2.

Lemma 4 (Martingale Convergence Theorem [42]): Let
random variable sequence {Xn : n = 0, 1, . . .} be a martingale.
If limn→∞ E[|Xn|] = M < ∞, then there is a finite random
variable X∞ with E[|X∞|] ≤ M such that

Xn
a.s.−−−→

n→∞ X∞.

D. Differentially Private Consensus

Differentially private consensus algorithms protect agents’
initial sensitive states from information leakage while the
individual agents are able to collaborate with each other to
reach an agreement. The following discrete-time differentially
private consensus model is proposed in [24] as:

θi(t + 1) = θi(t) + hui(t) + siηi(t) (1)

where θi(t) ∈ R is the internal state, h > 0 is the step size,
ηi(t) ∈ R is the random noise obeying a Laplace distribution,
and si > 0 is the noise parameter. Also, the controller ui(t) of
each agent in (1) is defined as follows:

ui(t) =
∑

j∈Ni

wij(xj(t) − xi(t)) (2)

where xi(t) is the transmitted message and it is defined as
follows:

xi(t) = θi(t) + ηi(t), i = 1, . . . , N. (3)

Remark 1: We here assume that the adversaries (no matter
inside or outside the network) only seek to infer the sensitive
information of individual agents or the agreement value of the
network and do not interfere the state updates of individual
agents in the network. Note that the presence of noise param-
eter si in (1) plays an important role on producing respective
privacy levels for all agents without affecting other agents.
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E. Dynamic Encoding/Decoding Scheme

Assume that each communication channel in a digital
network is equipped with a pair of dynamic encoder and
decoder which are responsible for encoding and decoding the
transmitted messages. Given an exact real-value state z(t) as
an input, the encoder � proposed in [36] is defined as

⎧
⎪⎨

⎪⎩

ξ(0) = 0
ξ(t) = ζ(t)φ(t) + ξ(t − 1)

φ(t) = q
(

1
ζ(t) (z(t) − ξ(t − 1))

) (4)

where ξ(t) is the internal state of encoder �, and φ(t) is the
output of �. The function q(·) is a uniform quantizer which
can transform a real-value state to a quantized state, and ζ(t) is
a scale function which is also called the dynamic quantization
factor.

Define the uniform quantizer q(·) as a map: R → S, where
S = {0,±n�, n = 1, 2, . . .} is the specified output set. The
detailed definition of q(·) is given as [29]

q(χ) =
⎧
⎨

⎩

0, − 1
2� < χ < 1

2�

n�, 2n−1
2 � ≤ χ < 2n+1

2 �

−q(−χ), χ ≤ − 1
2�

(5)

where � is the quantization interval. Note that if the uni-
form quantizer q(·) is bounded and only takes a finite output
set (e.g., S = {0,±n�, n = 1, 2, . . . , K}), q(·) is a 2K + 1-
level quantizer with quantization interval � and it will take
�log2(2K + 1)� bits. It is clear that the 2K + 1-level quan-
tizer will not saturate if the quantization input falls into the
range [(−K − 1/2)�, (K + 1/2)�); otherwise the quantizer
will reach saturation and become overloaded.

Given a signal φ(t) as an input, a decoder 
 is designed
in [36] as

{
ϕ(0) = 0
ϕ(t) = ζ(t)φ(t) + ϕ(t − 1)

(6)

where ϕ(t) is the estimate of the real-value state z(t). It can be
easily inferred that ϕ(t) = ξ(t), which implies that encoders
also possess the function of decoding besides that of encoding.

III. PROBLEM STATEMENT AND ALGORITHM DESIGN

This section focuses on how to extend the existing algorithm
of differentially private consensus to the case of a quantized
communication environment, where the exact real-value state
is not available for transmission. In light of the dynamic encod-
ing/decoding scheme (4)–(6), each agent i is equipped with a
pair of encoder �i and decoder 
i. Given the exact real-value
state xi(t) defined in (3) as an input to encoder �i, let ξi(t)
and φi(t) be, respectively, the internal state and the output of
encoder �i. Also let x̂i(t) be the output of a certain decoder
with φi(t) being the input to the decoder. Here, x̂i(t) is the
estimate of xi(t). As mentioned in Section II-E, the internal
state ξi(t) is the same as the estimate x̂i(t). According to (4),
the encoder �i is defined as

⎧
⎪⎨

⎪⎩

x̂i(0) = 0
x̂i(t) = ζ(t)φi(t) + x̂i(t − 1)

φi(t) = q
(

1
ζ(t) (xi(t) − x̂i(t − 1))

) (7)

where ζ(t) = ζ0γ
t is the dynamic quantization factor. Because

ξi(t) = x̂i(t), we have simply used x̂i(t) to replace ξi(t) in (7).
Each agent i implements the encoder �i to encode xi(t) (ana-
log signal) as φi(t) (digital signal) and then broadcasts φi(t)
to its neighbors. Note that in implementing (7), agent i also
needs to compute its own state estimate x̂i(t).

For a certain agent j that is a neighbor of agent i, when
agent j receives the output φi(t) from agent i, it decodes φi(t)
(digital signal) as x̂i(t), which is the estimate of the exact real-
value state xi(t). According to (6), the decoder 
j at agent j
used to decode φi(t) is defined as

{
x̂i(0) = 0
x̂i(t) = ζ(t)φi(t) + x̂i(t − 1).

(8)

It should be emphasized that the decoding operation in (8)
and the encoding operation of the internal state in (7) are
actually identical even if these two operations are implemented
in different agents. That is, the decoded state estimate x̂i(t)
in neighbor j ∈ Ni equals to the internal state computed in
encoder �i. In summary, in the implementation of its encoder
and decoder, each agent i not only needs to decode all φj(t), j ∈
Ni from its neighbors but also needs to compute its own state
estimate x̂i(t) as the internal state of its encoder.

Since the exact real-value transmission is restricted and the
available neighbor states to agent i are only their estimates
decoded from decoder 
i, we redesign the controller ui(t)
in (2) based on the encoders and decoders implemented at
each agent as follows:

ui(t) =
∑

j∈Ni

wij
(
x̂j(t) − x̂i(t)

)
(9)

where the estimate of the exact real-value state is used instead.
Note that even if the exact real-value state xi(t) is available
to agent i itself, the agent still uses the estimate x̂i(t) in (9)
to achieve a symmetric design. This symmetric design plays
a key role in eliminating the accumulated estimation error,
which will be introduced in the next section.

Remark 2: There are a variety of quantizers that have
been investigated in the existing literature. Compared with
other quantizers, the dynamic encoding/decoding scheme used
in this paper has advantages on eliminating the impact of
quantization errors and achieving a more accurate conver-
gence result. Specifically, the strictly true consensus can be
achieved and the final consensus value is independent of
the quantization parameter � owing to the symmetric design
of the controller and the zoom-in/zoom-out functions of the
dynamic encoders/decoders. Furthermore, the assumption of
the unbounded quantizer can be avoided and the proba-
bility bounds on quantization with bounded quantizers are
established in this paper. Of course, compared with other
simple quantization schemes, the tradeoff is the increase of
computation burden for the agents in the network.

Remark 3: Note that the quantization input in (7) is based
on a prediction error xi(t) − x̂i(t − 1) rather than the state
xi(t), which will largely save the number of bits since the
magnitude of the prediction error is far smaller than the state
itself. Furthermore, the dynamic quantization factor ζ(t) plays
a key role in the achievement of the strictly true consensus
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Fig. 1. Integrated communication framework.

because it can zoom in the quantization input to ensure the
quantizer still remain activated so that the quantizers cannot
stay in a range within one quantization interval � in advance.
In addition, it should be pointed out that the exponentially
decreasing form of ζ(t) is not originally proposed in this paper.
Actually, the notion of the dynamic quantization factor and the
exponentially decreasing ζ(t) can be found in [31] and [35].
This paper studies the differentially private consensus problem
with the exponentially decreasing ζ(t) mainly due to its
good performance in achieving a more accurate convergence
result.

To illustrate the communication process more intuitively,
an integrated communication framework is shown in Fig. 1.
Note that the actuator of each agent is divided into two parts:
1) controller and 2) differential privacy (DP) unit, which are
responsible for the state fusion and the generation of random
noise, respectively. When actuator i generates an exact real-
value state xi(t), this state will be first encoded as φi(t) by
encoder �i and then agent i broadcasts φi(t) to all its neigh-
bors. In the meanwhile, once agent i receives the outputs
φj(t) from its neighbors, the decoder 
i decodes φj(t) as the
estimate x̂j(t), and then save it in the local memory.

According to this framework, a detailed communication
algorithm employing a dynamic encoding/decoding scheme is
provided in Algorithm 1. Suppose that each agent i is equipped
with a local memory, which is used to store the internal
state θi(t), state estimates x̂i(t) and x̂j(t), j ∈ Ni. Furthermore,
the initial values of all agents’ internal states are given by
θ(0) = (θ1(0), . . . , θN(0))T, and the initial state estimates of
all agents are set to 0. After the initializations of local memory
and DP units are completed at each agent i, the agent begins
to implement Algorithm 1 at each time instant.

Remark 4: It is worth emphasizing that Algorithm 1 is
based on the case of a bounded quantizer. To avoid the uncer-
tainty of saturation, we here employ a conditional statement
in steps 4–8 to ensure the quantization input always falls into
the prescribed range in the regular execution of Algorithm 1.
Once the quantization input goes beyond the capacity of the
bounded quantizer, the conditional statement in Algorithm 1

Algorithm 1 Differentially Private Consensus Algorithm With
a Dynamic Encoding/Decoding Scheme

1: Agent i updates its own internal state as follows θi(t+1) =
θi(t) + h

∑N
j=1 wij(x̂j(t) − x̂i(t) + siηi(t)

2: Produces the Laplacian noise ηi(t + 1)

3: Calculates the transmitted message xi(t + 1) = θi(t + 1)+
ηi(t + 1)

4: if 1
ζ(t+1)

(xi(t + 1) − x̂i(t)) < (K + 1/2)� then
5: Encodes xi(t + 1) as φi(t + 1) =

q
(

1
ζ(t+1)

(xi(t + 1) − x̂i(t))
)

6: else
7: Terminates the algorithm and resets the initialization.
8: end if
9: Broadcasts φi(t + 1) to the neighbors of agent i

10: Detects if some outputs from neighbors are received or
not

11: if an output φj(t + 1) from neighbor j is received then
12: decodes φj(t + 1) as the state estimate x̂j(t + 1) =

ζ(t + 1)φj(t + 1) + x̂j(t)
13: updates the state estimate x̂j(t + 1) stored in agent i
14: else
15: keeps local memory constant
16: end if

will be violated and then the algorithm is terminated. One
might doubt that the quantization input will often trigger sat-
uration so that Algorithm 1 cannot be executed continuously.
In the next section, we will analytically show that this con-
ditional statement is practical and performs well for the case
of a bounded quantizer in terms of the proposed differential
privacy algorithm and the dynamic encoding/decoding scheme
under certain conditions.

IV. MAIN RESULTS

A. Convergence Analysis With Unbounded Quantizers

Since the Laplacian random noise is added in the state
updates of individual agents, the system (1) we study
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consequently becomes a stochastic system that is more com-
plex than a deterministic one. In this section, we first consider
the case of an unbounded quantizer and provide the theoretical
analysis on the mean square convergence of system (1), (3),
and (7)–(9) under a quantized communication environment.
Before stating the main results, we first make some necessary
definitions and assumptions as follows.

Definition 1 (Mean Square Convergence [33]): For a given
initial state x(0) for all agents, if there exists a random variable
x∗ such that

lim
t→∞E

[
xi(t) − x∗]2 = 0, i = 1, 2, . . . , N

then all agents are said to achieve mean square convergence
asymptotically.

Assumption 1 (Connectivity): Suppose that the communica-
tion graph G is undirected and connected.

Assumption 2 (Infinity of Quantizers): Suppose that the
quantizer is unbounded and has an unrestricted dynamic range.
In other words, the quantized output set S = {n�|n ∈ N} is
countably infinite and the quantizer cannot reach saturation.

Theorem 1: Consider the consensus model (1) with control
input (9) under a quantized communication environment. If
Assumptions 1 and 2 hold, and the transmitted message xi(t)
in (3) is corrupted by Laplacian noise ηi(t) ∼ Lap(bi(t)) with
bi(t) = ciqt

i, then for any given h ∈ (0, 2/λN), ci > 0, si ∈
(0, 1), qi ∈ (1 − si, 1), γ ∈ (maxi{ρm, qi}, 1)

lim
t→∞E[V(t)] = 0, ∀ θi(0) ∈ R

where the variable V(t) = ∑N
i=1(θi(t) − (1/N)

∑N
j=1 θj(t))2 is

the energy function of consensus error.
Proof: See Appendix A.
Remark 5: The random noise ηi(t) belongs to the Laplacian

distribution Lap(bi(t)) with bi(t) = ciqt
i, which implies that

the addition of the noise is exponentially decreasing as time
goes on. In practice, the reasons to choose the exponentially
decreasing noise are twofold: 1) the exponentially decreasing
noise guarantees that the total additional noise of each agent is
bounded and 2) it also guarantees that the variance of the noise
ηi(t) (i.e., V[ηi(t)] = E[η2

i (t)] = 2c2
i q2t

i ) is summable in the
infinite sequence of time, which produces a bounded conver-
gence result. Otherwise, the unboundedness of the total noise
might lead to the instability of the whole system. Furthermore,
the constraint γ ∈ (maxi{ρm, qi}, 1) implies that the ran-
dom noise ηi(t) ∼ Lap(bi(t)) with bi(t) = ciqt

i should be
exponentially decreasing faster than the dynamic quantization
factor ζ(t) = ζ0γ

t, which plays a key role in the theoretical
convergence analysis of Theorem 1 and the next Theorem 2.

Remark 6: Theorem 1 shows that the mean square consen-
sus can be achieved successfully under the assumption that
the quantizer is unbounded (i.e., the quantizer cannot reach
saturation), which implies that if Algorithm 1 can be executed
continuously, then the proposed differentially private consen-
sus algorithm utilizing the quantized data with a bounded
quantizer can reach an agreement asymptotically in mean
square. In the next section, we will show that Algorithm 1
has a good performance on the avoidance of saturation even if
the quantizer is bounded and has only a finite dynamic range.

B. Probability Bounds on Boundedness of Quantization With
Bounded Quantizers

Considering the limited capacity channels and load balance
in digital communication networks, we here employ a bounded
uniform quantizer, that is, the quantized data takes only a finite
number of values (output set S = {0,±n�, n = 1, 2, . . . , K} is
countably finite). Note that even if the initial state is bounded,
the sequence of quantization input in a quantizer can still
become unbounded due to the addition of Laplacian noise and
the presence of dynamic quantization factors, which means
that the bounded quantizer might reach saturation and produce
an uncontrollable quantization error. To avoid this uncertainty,
motivated by the idea in [37], we employ a conditional state-
ment in Algorithm 1 to ensure that the quantizers always
remain unsaturated in the regular execution of the algorithm.
Note that Algorithm 1 can be executed continuously means
that the quantizer still remains unsaturated and the quantiza-
tion error is always controllable. Once the quantization input
goes beyond the capacity of the bounded quantizer, the condi-
tional statement in Algorithm 1 will be violated and then the
algorithm is terminated.

Clearly, it is impossible to ensure that Algorithm 1 is always
executed continuously (i.e., the quantization input never go
beyond the capacity of the bounded quantizer) because the
addition of Laplace noise makes system (1) become a stochas-
tic system which is more complex than a deterministic one.
However, we can give a probability bounds on the bound-
edness of quantization from the statistical point of view in
terms of Algorithm 1. Next, we will analytically show that
Algorithm 1 has a good performance based on a fact that the
bounded quantizer can remain uniformly unsaturated with high
probability under certain conditions.

Theorem 2: Consider the multiagent network (1) with con-
trol input (9) in terms of Algorithm 1. Suppose that the initial
internal state θ(0) and the initial additional noise η(0) are
both bounded. Let h ∈ (0, 2/λN), ci > 0, si ∈ (0, 1), qi ∈
(1 − si, 1), γ ∈ (maxi{ρm, qi}, 1), then for any time t

P

{
||U(t)||∞ ≤ √

M/p
}

≥ 1 − p, p ∈ (0, 1) (10)

when the quantization level satisfies

K ≥ �√M/p − 1/2� + 1 (11)

where

U(t) = γ −1[(I + hL)z(t − 1) − hLw(t − 1)

+ (S − I − hL)y(t − 1)
]+ y(t)

M = γ −2

(
N�2�2

1

4
+ �1�2

√
N

√
C� + �2

2C

)

+
√

2N�ζ0�1�3ĉ + 2Nĉ2
(
�2

3 + q̂2
)

ζ 2
0 γ 2

.

Proof: See Appendix B.
Remark 7: Note that U(t) can be seen as an input

vector composed of quantization inputs of all quantizers.
Consequently, ||U(t)||∞ represents the maximum magnitude
of the quantization inputs of all quantizers. Theorem 2 shows
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that when given a positive constant p, ||U(t)||∞ is bounded
with probability at least 1 − p, which implies that we can
select a small p to ensure that the quantization input remains
bounded with high probability. It should be pointed out that the
quantization level K in (11) is just a conservative estimation,
which mainly provides an intuitive reference on the relation
between the quantization level and the other key parameters
in the network. Once the bound of the probability is deter-
mined, we can easily calculate the required number of bits to
make the bounded quantizer remain unsaturated with desired
high probability. On the other hand, (10) and (11) imply a
tradeoff between the desired high probability and the required
quantization level, which is not avoidable in the design of a
quantizer.

C. Accuracy Analysis

In this section, we further provide the statistical analysis on
the convergent accuracy of system (1), (3), and (7)–(9) under
a quantized communication environment.

Definition 2 [23]: For a given initial state x(0), if the agree-
ment value of a stochastic system converges to a random
variable x∗ and the dispersion bound of x∗ is r with probability
at least 1−p, where p ∈ (0, 1), r ≥ 0, then the (p, r)-accuracy
is said to be achieved in the system.

Theorem 3: The proposed differentially private consensus
protocol (1) with control input (9) under a quantized commu-
nication environment achieves

⎛

⎝p,
1

N

√
√
√
√2

p

N∑

i=1

s2
i c2

i

1 − q2
i

⎞

⎠

accuracy. Furthermore, the expectation of the agreement value
θ∞ is unbiased and it equals to the initial state average θ̄ (0)

exactly with a disturbance variance

V[θ∞] = 2

N2

N∑

i=1

s2
i c2

i

1 − q2
i

.

Proof: See Appendix C.
Remark 8: Theorem 3 actually shows that the agreement

value θ∞ of the system is just a random variable that falls in
a neighbor range of the initial state average, but the expec-
tation of the agreement value θ∞ equals to the initial state
average exactly. Note that the quantization parameter � has
no direct impact on the final private consensus results. The
reasons are twofold: 1) the estimation errors of the whole
network are canceled out due to the symmetric design of
the controller and 2) the zoom-in/zoom-out functions of the
dynamic encoders/decoders make sure that the strictly true
consensus can be achieved and the final consensus value is
independent of the quantization parameter �. Actually, the
parameter � mainly has an impact on the necessary num-
ber of bits used for communication. When the parameter �

becomes larger, the necessary number of communication bits
increases accordingly.

Remark 9: It should be pointed out that Theorems 1–3 are
based on the undirected topology. Theoretically, extending the
main results to a directed topology is quite challenging. The

main reason is that the symmetric property of the undirected
topology plays a key role in the convergence analysis and the
accuracy analysis. In contrast, it will be quite difficult to deal
with the asymmetric structure of the directed topology in the
theoretical analysis.

D. Analysis of Differential Privacy

In this section, we first give some necessary definitions on
differential privacy and then establish the main result. The
agents in a network collaborate with each other to reach an
agreement value by exchanging messages with their neigh-
bors. In the process of information exchange, the potential
adversaries might be able to observe the transmitted mes-
sages (i.e., the quantized outputs), which are also called the
observable parts. In contrast, the adversaries cannot observe
the internal sensitive states and the additional Laplace noise
since they are not transmitted directly in the communica-
tion network. For simplicity, let φ(t) = (φ1(t), . . . , φN(t))T

and η(t) = (η1(t), . . . , ηN(t))T, then the possible observation
sequence can be represented as φ = {φ(0), φ(1), . . .} and the
noise sequence can be represented as η = {η(0), η(1), . . .}.
From (3), (7), and (8), we can obtain that the quantized output
sequence φ uniquely depends on the additional noise sequence
η once the initial internal state θ(0) is given. Thus, the possible
observation sequence for given θ(0) and η can be represented
as �θ(0)(η) = {φ(0), φ(1), . . .}. Similarly, the possible obser-
vation sequence for given θ ′(0) and η′ can be represented as
�θ ′(0)(η

′) = {φ′(0), φ′(1), . . .}.
Definition 3 [20]: For a given pair of vectors x, x′ with N

dimensions, if there exist a δ ≥ 0 and a k ∈ {1, 2, . . . , N} such
that

|xi − x′
i| ≤

{
δ, i = k
0, i 	= k

then x and x′ are called δ-adjacent.
Definition 4 [23]: For a given pair of initial values

θ(0), θ ′(0) in a stochastic system, if they are δ-adjacent and
for any possible observation sequence set O ⊂ (RN)N and
noise sequence set � ⊂ (RN)N such that

P
{
�θ(0)(η) ∈ O|η ∈ �

} ≤ eεδ
P
{
�θ ′(0)

(
η′) ∈ O|η′ ∈ �

}

then the ε-differential privacy is said to be preserved in the
system.

Remark 10: From Definition 4, we can obtain that the pres-
ence or the absence of any one participant does not have
obvious influence on the final query results in the implemen-
tation of the differential privacy mechanism. In other words,
the δ-adjacent θ(0) and θ ′(0) with noise sequences η and η′
will generate the same observation sequence with high prob-
ability. As a result, even if the malicious adversaries might
listen to the exchanged information between agents, they can-
not infer the sensitive information of individual agents or the
whole network.

Theorem 4: The proposed differentially private consensus
protocol (1) with control input (9) under a quantized commu-
nication environment preserves εi-differential privacy, where

εi = qi

ci(qi + si − 1)
, qi ∈ (1 − si, 1).
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Fig. 2. Weighted undirected topology with six agents.

Fig. 3. Trajectory of the internal state of each agent.

Obviously, the privacy level of the whole network is ε =
maxi(εi).

Proof: See Appendix D.
Remark 11: Given any privacy level {εi}N

i=1, each agent i ∈
1, . . . , N selects the free parameters ci, si, qi to determine the
amount of noise added in the execution of the main algorithm.
To minimize the impact of the dynamic encoding/decoding
scheme so that the system can converge to an agreement
asymptotically in mean square, Theorems 1 and 2 give the
constraints that the parameter γ in dynamic quantization fac-
tor ζ(t) must be ensured that γ ∈ (maxi{ρm, qi}, 1), which
implicitly establishes a relationship between the dynamic
encoding/decoding scheme and the differential privacy mech-
anism. Basically, this constraint implies that the Laplacian
noise ηi(t) ∼ Lap(bi(t)) with bi(t) = ciqt

i should be expo-
nentially decreasing faster than the dynamic quantization
factor ζ(t) = ζ0γ

t. That is, when γ becomes smaller, one
should add Laplacian noise with smaller parameter qi, which
is corresponding to a larger privacy level when the other
free parameters si and ci are given and remain constant.
Theorem 3 gives the relationship between the convergence
accuracy and the differentially private mechanism, which
implies that the convergence result becomes more accurate
(i.e., less accuracy is preserved) as the parameter qi becomes
smaller.

Remark 12: Generally speaking, the added noise ηi(t) can
be drawn from various distributions, such as the Laplace distri-
bution, the Gaussian distribution, the exponential distribution,

Fig. 4. Histogram of total agreement values.

Fig. 5. Trajectory of the controller state of each agent.

Fig. 6. Quantized output of each agent.

and the geometric distribution [43]. Even if a number of
mechanisms for achieving differential privacy have been inves-
tigated, there is no universally optimal mechanism (defined
as the best accuracy/utility with a specified privacy level) for
various application scenarios [44]. It is worth noting that the
notion of differential privacy is originally introduced in [45],
where the addition of Laplacian noise produces a standard
ε-differential privacy. Take the Gaussian mechanism for exam-
ple, the addition of Gaussian noise leads to a relaxed notion of
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Fig. 7. Observation sequences φ(t), φ′(t) corresponding to the δ-adjacent θ(0), θ ′(0).

privacy denoted by (ε, δ)-differential privacy. Compared with
the Gaussian mechanism, the Laplacian mechanism allows
δ = 0, which implies that more privacy can be preserved in
the practical implementation [46]. Furthermore, it is proved
that the Laplacian mechanism (among other possible distri-
butions) shows good performance in minimizing the entropy
of the transmitted messages while preserving differential pri-
vacy in a discrete-time linear feedback system [47]. Therefore,
we choose the Laplacian mechanism to establish the standard
ε-differential privacy in this paper.

V. SIMULATIONS

In this section, we provide some simulations to illustrate the
main results. Consider a communication network with graph G
given in Fig. 2, and the initial internal state is randomly gen-
erated as θ(0) = (7.0573, −3.4323, −2.7413, 4.1917, 6.1636,
−4.8213), then we can obtain λN = 2.18. Letting ci = 0.2,
qi = 0.1, si = 0.99, we can get h ∈ (0, 0.92), γ ∈ (0.78, 1)

according to Theorems 1 and 2. Thus, we can set h = 0.46,
γ = 0.89, ζ0 = 0.9, � = 0.25. Then, the necessary quantiza-
tion level K ≥ 216 is calculated for a given constant p = 0.05.
In practice, we choose K = 200 for the following simula-
tions. In contrast, if a too small K (e.g., K = 50) is chosen,
Algorithm 1 is often terminated so that we cannot obtain any
simulation results.

The internal state trajectory of each agent is shown in
Fig. 3. It should be pointed out that the agreement value of
the network does not converge to the initial state average of
all agents and it only falls in a neighbor range of the initial
state average. Besides, the trajectory of the real-time state aver-
age in this paper is time varying instead of a constant initial
state average. In other words, the trajectory of the real-time
state average might be disturbed at the start time and then
gradually tends to be stable as time goes on. For example,
the black line in Fig. 3 shows the trajectory of the real-time
state average. To obtain the explicit distribution of the agree-
ment value in a stochastic system, we run the algorithm with
106 times and we obtain the distribution results as shown in
Fig. 4. We can see that all the agreement values of 106 runs

mainly fall in an interval [0.6, 1.5] and the mean of the his-
togram equals to the initial state average exactly. It is worth
emphasizing that the 0-mean and the diminishing scale func-
tion bi(t) = ciqt

i, qi ∈ (0, 1) of the additional Laplace noise
play key roles on the stability of the real-time state average.

The state trajectory of the controller of each agent is shown
in Fig. 5, which shows that the state trajectories of all con-
trollers finally converge to zero asymptotically. The quantized
outputs of all agents are shown in Fig. 6, which obviously
shows that all outputs are bounded in one quantization interval
(� = 0.25) finally. Note that even if the quantized outputs can-
not reach an exact consensus, the internal states and the state
estimates are able to achieve an agreement value asymptoti-
cally as shown in Figs. 3 and 5. This is due to the introduction
of the dynamic encoding/decoding scheme which employs a
dynamic quantization factor so that each agent can obtain
a more exact state estimate instead of a directly quantized
output.

To show the features of the differential privacy, we choose a
pair of δ-adjacent θ(0) = (7.0573, −3.4323, −2.7413, 4.1917,
6.1636, −4.8213) and θ ′(0) = (0,−3.4323, −2.7413, 4.1917,
6.1636, −4.8213), which implies that only the internal states
of the first agent in θ(0) and θ ′(0) are different. Then we can
obtain δ = 7.0573. Based on the δ-adjacent θ(0) and θ ′(0),
the possible observation sequences (i.e., the quantized outputs)
between agents are shown in Fig. 7, which shows that the
two different observation sequences φ(t) and φ′(t) are exactly
fitted. That is, the malicious adversaries cannot distinguish the
difference between these two observation sequences and then
they cannot infer the sensitive information of individual agents
or the whole network.

VI. CONCLUSION

We first reformulate the differentially private consensus
model integrated with a dynamic encoding/decoding scheme
for digital multiagent networks. Second, we proposed a differ-
entially private communication algorithm utilizing the quan-
tized data with a bounded quantizer to preserve the initial
states’ privacy of participants. Third, the theoretical analysis
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on the mean square convergence was provided to explain the
feasibility of the extended model and convergence conditions
in the case of an unbounded quantizer. Fourth, we gave a statis-
tical analysis that the bounded quantizer with a finite number
of bits can remain unsaturated with desired high probability in
the execution of the proposed algorithm. Finally, the statistical
analysis on the convergent accuracy and the differential pri-
vacy was provided and the potential relationship between the
dynamic encoding/decoding scheme and the differential pri-
vacy was also established. In the future, we will consider to
extend the main results to the directed graph and the switching
topology conditions.

APPENDIX A
PROOF OF THEOREM 1

Define consensus error as follows:

δi(t) = θi(t) − 1

N

N∑

j=1

θj(t). (12)

Let J = (1/N)11T ∈ R
N×N . Note that JL = 0. Multiplying J

on both sides of (36), we have Jθ(t + 1) = J(θ(t) + Sη(t)).
Then it follows that:

δ(t + 1) = θ(t + 1) − Jθ(t + 1)

= (I − hL)θ(t) + (S − hL)η(t) + hLe(t)

− Jθ(t) − JSη(t)

= (I − hL)δ(t) + (S − hL − JS)η(t) + hLe(t)

(13)

x(t + 1) − x̂(t) = θ(t + 1) + η(t + 1) − x̂(t)

= (I − hL)θ(t) + (S − hL)η(t) + hLe(t)

+ η(t + 1) − x̂(t)

= (I + hL)e(t) − hLδ(t)

+ (S − I − hL)η(t) + η(t + 1) (14)

where δ(t) = (δ1(t), . . . , δN(t))T.
Let ζ(t) = ζ0γ

t and denote w(t) = (1/ζ(t))δ(t), z(t) =
(1/ζ(t))e(t), y(t) = (1/ζ(t))η(t), then we can have

w(t + 1) = γ −1[(I − hL)w(t) + hLz(t) + (S − hL − JS)y(t)
]

z(t + 1) = U(t + 1) − Q(U(t + 1)) (15)

where the quantization input

U(t + 1) = γ −1[(I + hL)z(t) − hLw(t) + (S − I − hL)y(t)
]

+ y(t + 1) (16)

and Q(U(t)) = (q(U1(t)), . . . , q(UN(t)))T. Note that z(t + 1)

can be called the quantization error at time t + 1.
Since L is a symmetric matrix, then we can define the uni-

tary matrix φ = (1/
√

N, φ2, . . . , φN), where φT
i L = λiφ

T
i .

Denote

φ̃ = (φ2, . . . , φN)

D = diag(0, λ2, . . . , λN), D̃ = diag(λ2, . . . , λN).

Let w̃(t) = φ−1w(t) = φTw(t), then we decompose w̃(t) as
follows:

w̃(t) = φTw(t) =
(

w̃1(t)
w̃2(t)

)

where the scalar w̃1(t) = 0 and the vector w̃2(t) = φ̃Tw(t).
Then we have

w̃(t + 1) = φTw(t + 1) =
(

0
w̃2(t + 1)

)

where

w̃2(t + 1) = γ −1(Ĩ − hD̃
)
w̃2(t) + hγ −1D̃φ̃Tz(t)

+ γ −1
[
φ̃T(I − J)S − hD̃φ̃T

]
y(t). (17)

Denote P1 = γ −1(Ĩ − hD̃), P2 = hγ −1D̃φ̃T, P3 =
γ −1[φ̃T(I − J)S − hD̃φ̃T], and ||P1|| = ρ1, ||P2|| = ρ2,
||P3|| = ρ3. In light of Lemma 1, ρ1 = γ −1 max2≤i≤N |1 −
hλi| = γ −1ρm, ρ2 = hγ −1λN , ρ3 ≤ γ −1(||(I − J)S|| + hλN).
Then it follows that:

w̃2(t + 1) = P1w̃2(t) + P2z(t) + P3y(t)

= Pt+1
1 w̃2(0) +

t∑

k=0

Pt−k
1 P2z(k) +

t∑

k=0

Pt−k
1 P3y(k).

(18)

It is worth emphasizing that: 1) ηi(t) is independent of θi(t);
2) ηi(t) is independent of ηj(t) for i 	= j; and 3) the expectation
E[ηi(t)] = 0. Thus, we have

E
[
w̃T

2 (t + 1)w̃2(t + 1)
] = E[T1 + T2 + T3 + T4 + T5]

(19)

where

T1 = w̃T
2 (0)P2(t+1)

1 w̃2(0)

T2 = 2w̃T
2 (0)Pt+1

1

t∑

k=0

Pt−k
1 P2z(k)

T3 =
t∑

k=0

zT(k)PT
2 Pt−k

1

t∑

k=0

Pt−k
1 P2z(k)

T4 =
t∑

k=0

yT(k)PT
3 Pt−k

1 Pt−k
1 P3y(k)

T5 = 2
t∑

k=0

zT(k)PT
2 Pt−k

1 Pt−k
1 P3y(k).

Following Assumption 2, the quantizer cannot reach sat-
uration, that is, the quantization error |zi(t)| ≤ �/2 for
any time t. In light of Lemma 2, we obtain E[η2

i (t)] =
V[ηi(t)] = 2c2

i q2t
i because the random noise ηi(t) ∼ Lap(bi(t))

with bi(t) = ciqt
i, qi ∈ (0, 1). Denote ĉ = maxi{ci}, q̂ =

maxi{qi}. According to Theorem 1, the parameters satisfy
h ∈ (0, 2/λN), γ ∈ (max{ρm, q̂}, 1), that is, ρ1 < 1, q̂/γ < 1.
Thus, we further have

E[T1] ≤ ρ
2(t+1)
1 ||w̃2(0)||2 ≤ ρ2

1 ||w̃2(0)||2 (20)

E[T2] ≤ √
N�||w̃2(0)||ρt+1

1 ρ2

t∑

k=0

ρt−k
1

≤ √
N�||w̃2(0)|| ρ1ρ2

1 − ρ1
(21)
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E[T3] ≤ E

[
t∑

k=0

||zT(k)||ρ2ρ
t−k
1

t∑

k=0

ρt−k
1 ρ2||z(k)||

]

≤ N�2ρ2
2

4(1 − ρ1)
2

(22)

E[T4] ≤ ρ2
3

t∑

k=0

ρ
2(t−k)
1 E

[
yT(k)y(k)

]

≤ 2Nρ2
3 ĉ2

ζ 2
0

t∑

k=0

(
q̂

γ

)2k

≤ 2Nρ2
3 ĉ2

ζ 2
0

(
1 − q̂2γ −2

) (23)

E[T5] ≤ 2ρ2ρ3

t∑

k=0

ρ
2(t−k)
1

1

ζ (k)
E
[||zT(k)|| · ||η(k)||]

≤
√

N�ρ2ρ3

ζ0

t∑

k=0

1

γ k

(
E

[
||η(k)||2

]) 1
2 ≤

√
2N�ρ2ρ3ĉ

ζ0
(
1 − q̂γ −1

) .

(24)

In conclusion, we have

E
[
w̃T

2 (t + 1)w̃2(t + 1)
]

≤ ρ2
1 ||w̃2(0)|| + √

N�||w̃2(0)|| ρ1ρ2

1 − ρ1
+ N�2ρ2

2

4(1 − ρ1)
2

+ 2Nρ2
3 ĉ2

ζ 2
0

(
1 − q̂2γ −2

) +
√

2N�ρ2ρ3ĉ

ζ0
(
1 − q̂γ −1

)

< ∞. (25)

Consider the candidate Lyapunov function V(t) =∑N
i=1 δ2

i (t) = δT(t)δ(t). Then it follows that as t → ∞:

E[V(t)] = ζ 2(t)E
[
wT(t)w(t)

] = 0. (26)

The proof is completed.

APPENDIX B
PROOF OF THEOREM 2

From (15) and (16), it follows that:

E

[
||U(t + 1)||2∞

]
≤ E

[
||U(t + 1)||2

]

= E[M1 + M2 + M3] (27)

where

M1 = γ −2[(I + hL)z(t) − hLw(t)]T[(I + hL)z(t) − hLw(t)]

M2 = 2γ −2zT(t)(I + hL)(S − I − hL)y(t)

M3 = γ −2ζ−2(t)ηT(t)(S − I − hL)2η(t)

+ ζ−2(t + 1)ηT(t + 1)η(t + 1).

Let �1 = ||I+hL||, �2 = h||L||, �3 = ||S−I−hL||, according
to (18) and (25), we have

E[M1] ≤ γ −2
E

[
�2

1||z(t)||2 + 2�1�2||z(t)|| · ||w(t)||
+ �2

2||w(t)||2
]

≤ γ −2

(
N�2�2

1

4
+ �1�2

√
N

√
C� + �2

2C

)

(28)

where

C = ρ2
1 ||w̃2(0)|| + √

N�||w̃2(0)|| ρ1ρ2

1 − ρ1
+ N�2ρ2

2

4(1 − ρ1)
2

+ 2Nρ2
3 ĉ2

ζ 2
0

(
1 − q̂2γ −2

) +
√

2N�ρ2ρ3ĉ

ζ0
(
1 − q̂γ −1

) . (29)

Furthermore,

E[M2] ≤
√

2N��1�3ĉ

ζ0γ 2
, E[M3] ≤ 2Nĉ2

(
�2

3 + q̂2
)

ζ 2
0 γ 2

(30)

then it follows that:

E

[
||U(t + 1)||2∞

]
≤ M (31)

where

M = γ −2

(
N�2�2

1

4
+ �1�2

√
N

√
C� + �2

2C

)

+
√

2N�ζ0�1�3ĉ + 2Nĉ2
(
�2

3 + q̂2
)

ζ 2
0 γ 2

. (32)

By Lemma 3, we thus have

P[||U(t + 1)||∞ ≥ c] ≤ √
M/c. (33)

Let p = √
M/c, then (10) in Theorem 2 follows. The proof is

completed.

APPENDIX C
PROOF OF THEOREM 3

Define the estimation error

ei(t) = xi(t) − x̂i(t). (34)

Combining (1), (3), and (9), it follows that:

θi(t + 1) = θi(t) + h
∑

j∈Ni

wij
(
x̂j(t) − x̂i(t)

)+ siηi(t)

= θi(t) + h
∑

j∈Ni

wij
(
θj(t) − θi(t)

)

+ h
∑

j∈Ni

wij
(
ηj(t) − ηi(t)

)

− h
∑

j∈Ni

wij
(
xj(t) − x̂j(t)

)

+ h
∑

j∈Ni

wij
(
xi(t) − x̂i(t)

)+ siηi(t) (35)

which can be further written as follows:

θ(t + 1) = (I − hL)θ(t) + (S − hL)η(t) + hLe(t) (36)

where θ(t) = (θ1(t), . . . , θN(t))T, η(t) = (η1(t), . . . , ηN(t))T,
e(t) = (e1(t), . . . , eN(t))T, S = diag(s1, . . . , sN).

Denote J = (1/N)11T ∈ R
N×N, θ̄ (t) = (1/N)1Tθ(t) ∈ R.

Obviously, we obtain JL = 0. Multiplying J on both sides
of (36) leads to Jθ(t + 1) = J(θ(t) + Sη(t)), which is
equivalent to

θ̄ (t + 1) = θ̄ (t) + 1

N

N∑

i=1

siηi(t). (37)
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Note that the noise ηi(t) ∼ Lap(bi(t)) with bi(t) =
ciqt

i, qi ∈ (0, 1), and E[ηi(t)] = 0,V[ηi(t)] = E[η2
i (t)] =

2c2
i q2t

i according to Lemma 2. Taking expectations on the
both sides of (37), we get E[θ̄ (t + 1)] = θ̄ (t) and the
random sequence {θ̄ (t)} is a martingale according to the
definition in [42].

From (37), we further have

θ̄ (t) = θ̄ (0) + 1

N

t−1∑

k=0

N∑

i=1

siηi(k). (38)

Then it follows that:

E

[
θ̄2(t)

]
≤ θ̄2(0) + 2

N2

N∑

i=1

s2
i c2

i

1 − q2
i

(39)

which implies that the average state sequence {θ̄ (t)} converges
to a finite random variable θ∞ almost surely according to
Lemma 4.

Denote the convergence point θ∞ = limt→∞ θ̄ (t), then we
have

E[θ∞] = θ̄ (0)

V[θ∞] = 2

N2

N∑

i=1

s2
i c2

i

1 − q2
i

.

By Lemma 3, we obtain

P
{|θ∞ − θ̄ (0)| ≤ r

} ≥ 1 − V[θ∞]

r2
. (40)

Furthermore, we choose r =
(1/N)

√
(2/p)

∑N
i=1 [(s2

i c2
i )/(1 − q2

i )], then P{|θ∞ − θ̄ (0)| ≤
r} ≥ 1 − p is obtained. The proof is completed.

APPENDIX D
PROOF OF THEOREM 4

For a given pair of δ-adjacent θ(0) and θ ′(0), suppose that
they are different only at the kth agent, that is, θk(0) = θ ′

k(0)+δ

and θi(0) = θ ′
i (0), i 	= k. For two different noise sequences

η = {η(0), η(1), . . .} and η′ = {η′(0), η′(1), . . .}, we define a
bijection as follows:

η′
i(t) =

{
ηi(t) + δ(1 − si)

t, i = k
ηi(t), i 	= k.

Proposition 1: For any agent k at all time t, the follow-
ing propositions hold under the above bijection: 1) θk(t) =
θ ′

k(t) + δ(1 − sk)
t; 2) x′

k(t) = xk(t); 3) x̂′
k(t) = x̂k(t); and

4) φ′
k(t) = φk(t), where θ ′

k(t), x′
k(t), φ

′
k(t), and x̂′

k(t) are the
internal state, transmitted message, quantized output, and state
estimation corresponding to initial state θ ′(0) for agent k,
respectively.

Proof: We employ mathematical induction to complete the
proof. For the case t = 0, it is easy to see that Proposition 1
holds. Assume Proposition 1 also holds for time t, then for
time t + 1, we have

θk(t + 1) − θ ′
k(t + 1)

= θk(t) − θ ′
k(t) + h

(
uk(t) − u′

k(t)
)+ sk

(
ηk(t) − η′

k(t)
)

= δ(1 − sk)
t + h

⎛

⎝
∑

j∈Nk

wij
(
x̂j(t) − x̂k(t)

)

−
∑

j∈Nk

wij

(
x̂′

j(t) − x̂′
k(t)

)
⎞

⎠

+ sk
(
ηk(t) − η′

k(t)
)

= δ(1 − sk)
t + sk

(−δ(1 − sk)
t)

= δ(1 − sk)
t+1

x′
k(t + 1) = θ ′

k(t + 1) + η′
k(t + 1)

= θk(t + 1) − δ(1 − sk)
t+1 + ηk(t + 1) + δ(1 − sk)

t+1

= θk(t + 1) + ηk(t + 1)

= xk(t + 1)

x̂′
k(t + 1) = ζ (t + 1)q

(
x′

k(t + 1) − x̂′
k(t)

ζ (t + 1)

)

+ x̂′
k(t)

= ζ (t + 1)q

(
xk(t + 1) − x̂k(t)

ζ (t + 1)

)

+ x̂k(t)

= x̂k(t + 1)

φ′
k(t + 1) = q

(
x′

k(t + 1) − x̂′
k(t)

ζ (t + 1)

)

= q

(
xk(t + 1) − x̂k(t)

ζ (t + 1)

)

= φk(t + 1).

The proof is completed.
Denote

�θ(0)(η) = {φ(0), . . . , φ(T)} = {ρ0, . . . , ρT}
�θ ′(0)

(
η′) = {

φ′(0), . . . , φ′(T)
} = {

ρ′
0, . . . , ρ

′
T

}

then we have �θ(0)(η) = �θ ′(0)(η
′) according to

Proposition 1, which implies that the malicious adversaries
cannot distinguish the difference between these two obser-
vation sequences and then they cannot infer the sensitive
information of individual agents or the whole network.

The joint probability density of observation sequences
�θ(0)(η) and �θ(0)(η) can be denoted as follows:

f
(
�θ(0)(η) ∈ O) =

T∏

t=0

f (ρt|ρ0, . . . , ρt−1)

f
(
�θ ′(0)

(
η′) ∈ O) =

T∏

t=0

f
(
ρ′

t |ρ′
0, . . . , ρ

′
t−1

)
.

It should be pointed out that the quantized output φ(t) uniquely
depends on the additional noise η(t) once the initial internal
state θ(0) is given. Besides, the additional random noise
ηi(t) obeys the Laplacian distribution ηi(t) ∼ Lap(bi(t)) with
bi(t) = ciqt

i, qi ∈ (0, 1). Thus, the joint probability density can
be further denoted as follows:

f
(
�θ(0)(η) ∈ O) =

T∏

t=0

N∏

i=1

L(ηi(t))

f
(
�θ ′(0)

(
η′) ∈ O) =

T∏

t=0

N∏

i=1

L(η′
i(t)

)
. (41)
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When the time sequence T → ∞, it follows that:

f
(
�θ(0)(η) ∈ O)

f
(
�θ ′(0)(η

′) ∈ O) =
∏T

t=0
∏N

i=1 L(ηi(t))
∏T

t=0
∏N

i=1 L
(
η′

i(t)
)

=
∏T

t=0 L(ηk(t))
∏T

t=0 L
(
η′

k(t)
) =

T∏

t=0

e
|η′

k(t)|−|ηk(t)|
ckqt

k

≤
T∏

t=0

e

|η′
k(t)−ηk(t)|

ckqt
k =

T∏

t=0

e
δ

ck

(
1−sk

qk

)t

= eεkδ. (42)

Taking integrations on both sides of (42), we can have the
following probability:

P
{
�θ(0)(η) ∈ O} ≤ eεkδP

{
�θ ′(0)

(
η′) ∈ O} (43)

where εk = [qk/(ck(qk + sk − 1))], qk ∈ (1 − sk, 1).
According to Definition 4, the agent k has its own privacy

level εk. It is obvious that any agent i ∈ {1, . . . , N} is able to
preserve εi-differential privacy with its own privacy level

εi = qi

ci(qi + si − 1)
, qi ∈ (1 − si, 1). (44)

Consequently, the privacy level of the whole network is the
maximum one of all εi, i = {1, . . . , N}, that is, ε = maxi(εi).
The proof is completed.
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