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Differentially Private Consensus With an
Event-Triggered Mechanism
Lan Gao , Shaojiang Deng, and Wei Ren , Fellow, IEEE

Abstract—This paper studies the differentially private
consensus problem of multiagent networks by employing
a distributed event-triggered mechanism such that not only
agents can protect the privacy of their initial states from
information disclosure, but the execution efficiency of the
whole network can be improved. First, we propose a dis-
tributed event-triggered mechanism for a differentially pri-
vate consensus algorithm such that frequent real-time com-
munication and controller updates can be avoided. Second,
we propose a distributed event-triggering condition that
only depends on local information and local parameters,
which can effectively avoid global information collection.
Third, the convergence analysis of the mean-square aver-
age consensus is given to explain the sufficiency of the
proposed event-triggered mechanism and event-triggering
condition. Furthermore, we establish the statistic proper-
ties of the convergent accuracy that the expectation of the
convergence point converges to the average value of all
agents’ initial states exactly and the disturbance variance
is bounded with an explicit expression. In addition, we fur-
ther give the differential privacy analysis that each agent
can flexibly select its own privacy level to prevent infor-
mation disclosure. Finally, simulation results are given to
illustrate the effectiveness of the proposed mechanism and
the correctness of the theoretical results.

Index Terms—Differentially private consensus, dis-
tributed event-triggered mechanism, multiagent network.

I. INTRODUCTION

THE CONSENSUS and cooperation problems of multia-
gent networks have received increasing attention in recent

years from various fields including multirobot coordination [1]–
[3]; distributed filtering and estimation [4], [5]; sensor fusion [6],
[7]; feature-based map merging [8], [9]; and distributed tracking
[10]–[12]. Generally, a consensus algorithm requires agents to
share their individual states with their neighbors and, in some
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cases, even their local inputs [13]. This might be very dangerous
for privacy disclosure because if some malicious adversaries are
able to listen to the exchanged messages, then they could infer
local inputs, individual states, sensitive responses, and even the
final agreement value of the network. In light of these scenar-
ios, the requirement of the privacy preservation poses a new
challenge in the consensus study of multiagent networks.

From the viewpoint of privacy, the participating agents may
not want to disclose their initial or current state values while
communicating with each other to reach an agreement. For ex-
ample, a group of agents might want to rendezvous at a certain
location while keeping their initial locations secret to others
due to some particular reasons. In another practical scenario, a
group of individuals might want to vote for a common decision
on some subject while they do not want to reveal their exact
personal opinions in the meantime [14].

In the context of privacy preservation, the notion of the dif-
ferential privacy first introduced in [15] has gained significant
popularity due to its rigorous formulation and proven security
properties, including the resilience to postprocessing and side
information, and the independence from the models of adver-
saries [16]. Based on the work under continual observation [17],
the notion of the differential privacy is introduced into the aver-
age consensus study of multiagent networks [18]. Then, relevant
problems including filtering estimation [19] and distributed op-
timization [20], [21] have been further studied in recent years.
Specifically, an interesting result that the exact average con-
sensus cannot be accomplished under the differential privacy
mechanism is established in [22], where a more accurate con-
vergence point in expectation and a distributed privacy level for
each agent are given. Then, the convex optimization problem of
the differential privacy is further discussed in [23] and [24].

Regarding the execution efficiency of the network evolu-
tion, the aforementioned differential privacy consensus algo-
rithms have a common deficiency: real-time communication
and controller updates. In other words, each agent has to collect
its neighbors’ information and actuating its controller updates
every time instant, which may be infeasible for agents only
equipped with small and capability-limited embedded micro-
processors [25]. Therefore, how to design and develop a proper
control strategy to avoid real-time communication becomes a
new challenge for researchers.

The advent of the event-triggered mechanism offers a new
viewpoint on how information should be collected and trans-
mitted [26]. Under an event-triggered mechanism, an agent
transmits its local state to its neighbors only when it is nec-
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essary, that is, only when a measurement of the local agent’s
state error reaches a specified threshold [27]. A novel event-
triggering condition based on the norms of the state and the state
error is presented in [28], where the measurement received at
the controller is held constant until a new measurement arrives.
When this happens, the error is set to zero and starts increasing
until it triggers a new measurement update. Obviously, the real-
time communication and controller updates are avoided, and
then the execution efficiency will be largely improved [26]. The
event-triggered control strategy was first implemented into the
study of the average consensus of multiagent networks in [29]
and [30]. From then on, a growing large number of research re-
sults on discrete-time systems [31]; leader–follower consensus
[32], [33]; trajectory tracking [34], [35]; quantized sampled-data
communication [36], [37]; observer-based feedback [38], [39];
and second-order dynamics [40], [41] have been published in
recent years.

In this paper, we focus on improving the execution
efficiency of differentially private consensus by utilizing the
event-triggered mechanism in order to effectively avoid fre-
quent real-time communication and controller updates. Note
that the interplay of these two ideas is not trivial. As mentioned
previously, all of the existing works on the differential privacy
consensus assume that the communication and controller up-
dates are real time and continuous. Also, the existing works on
the event-triggered consensus only focus on the common con-
sensus problem without accounting for the individual privacy
preservation. To achieve the differential privacy consensus un-
der an event-triggered mechanism, the existing works cannot be
applied directly and there are several new significant challenges
that need to be overcome. The biggest challenge is how to design
a communication algorithm based on an event-triggered strategy
such that the convergent accuracy and the differential privacy
can be well preserved. Furthermore, some statistic characteris-
tics should be employed to describe the stochastic convergence
process due to the existence of Laplacian random noise. In addi-
tion, the measurement error and the event-triggering condition
need to be redesigned under the consideration of the Laplacian
random noise and the preselected privacy level. Finally, to avoid
global information collection, a distributed event-triggering con-
dition that only depends on local information and local param-
eters should be designed.

The main contribution of this paper is to design a novel com-
munication algorithm that successfully combines the benefits
of the differential privacy consensus and the event-triggered
mechanism such that not only can the individual privacy be well
preserved but the execution efficiency of the whole network
can be largely improved. More specifically, we first propose a
distributed event-triggered algorithm for the differential privacy
consensus such that information collection and exchange depend
on nonperiodic sporadic sampling instead of real-time sampling.
Second, we propose a distributed event-triggering condition that
only depends on local information and local parameters, which
can effectively avoid global information collection. Third, the
convergence analysis of the mean-square average consensus is
given to explain the sufficiency of the proposed algorithm and
event-triggering condition. Furthermore, since the transmitted

messages are corrupted with Laplacian random noise to achieve
the differential privacy, we establish the statistic properties of
the convergent accuracy that the expectation of the convergence
point converges to the average value of all agents’ initial states
exactly, and the disturbance variance is bounded with an explicit
expression. In addition, we further discuss the differential pri-
vacy level from the view of privacy preservation that each agent
can flexibly select its own privacy level to prevent information
disclosure.

The remainder of this paper is organized as follows: Section II
declares some preliminary knowledge and background about
the graph theory, probability theory, and differential privacy
consensus; Section III provides the detailed event-triggered
algorithm for the differential privacy consensus; Section IV
gives the main results including the mean-square consensus
analysis, the accuracy on the convergence point, and the
differential privacy analysis with the preselected privacy level;
some numerical simulations are given in Section V to illustrate
the main results; and, finally, this paper concludes in Section VI.

II. PRELIMINARIES AND BACKGROUND

A. Notations

The following standard notations are used throughout this pa-
per. The set of all natural numbers, positive integers, real num-
bers, and non-negative real numbers are, respectively, denoted
by N, N+ , R, and R≥0 . The absolute value of the real number x
is denoted by |x|. Let 1N and 0N be, respectively, a 1 vector and
a 0 vector containing N elements, and IN be an N -dimension
unity matrix. The transposes of a vector v and a matrix M are
denoted by vT and MT , respectively. The average of any given
vector x is denoted by Ave(x). The probability density function,
probability, expectation, and variance of a random variable X
are denoted by f(X), P{X}, E[X], and V [X], respectively.

B. Algebraic Graph Theory

Let G = {V, E ,W} be an undirected graph with N nodes, in
which V = {1, 2, ..., N} is the node set, E ⊆ V × V is the edge
set, and W = (wij ) ∈ RN ×N is the weighted adjacency matrix
of G. An edge eji = (vj , vi) represents that node j can reach
node i or node i can directly receive information from node
j. Here, W is a symmetric matrix, that is, the communication
channels between network nodes are two way. If eij ∈ E , that
is, there is a communication channel between node i and node
j, then they are called neighbors of each other and accordingly
wij = wji > 0; otherwise, wij = wji = 0. The neighbor set of
node i is denoted by Ni . Let Ni = |Ni | denote the number of
neighbors of node i. The Laplacian matrix L = (lij ) ∈ RN ×N

associated with the adjacency matrix W is defined by lij =
−wij , i �= j and lii =

∑N
j=1,j �=i wij .

C. Probability Theory

The following lemmas about the probability theory will be
used in our analysis.

Lemma 1: [42] For a random variable X obeying Laplace
distribution, that is, X ∼ Laplace(μ, b), then the Laplace prob-
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ability density function is given by

L(x) =
1
2b

exp

(

−|x − μ|
b

)

where μ is the mean and b is the scale parameter. Then, we have
the expectation E[X] = μ and the variance V [X] = 2b2 .

Lemma 2: [43] Considering a random variable X with
finite expected value μ and finite nonzero variance σ2 , then for
any scalar k > 0, the following Chebyshev inequality holds:

P{|X − μ| ≥ kσ} ≤ 1
k2 .

D. Differential Privacy Consensus

The privacy-preserving consensus means to develop a control
algorithm to protect the agents’ states from disclosure while the
agents can communicate with their neighbors and update their
states to reach an agreement [14]. We consider adversaries inside
or outside the network that do not interfere with the algorithm
execution but seek to steal information about the input values,
individual states, or the agreement trajectory of the network.
Regarding this condition, the notion of the differential privacy
is employed to meet the privacy requirement. The following
differentially private consensus algorithm in discrete time is
proposed in [18] and [22]:

θi(t + 1) = θi(t) + hui(t) + siηi(t) (1)

where θi(t) ∈ R is the internal state of agent i, ηi(t) ∈ R is a
random noise generated by agent i at time t from a Laplace
distribution, h > 0 is the step size, and si > 0 is the noise pa-
rameter for agent i. The controller ui(t) is defined as

ui(t) =
∑

j∈Ni

wij (xj (t) − xi(t)) (2)

where the transmitted message xi(t) is defined as

xi(t) = θi(t) + ηi(t), i = 1, . . . , N. (3)

Remark 1: The privacy concern of agents can be local (e.g.,
some or all of the agents do not want to reveal their local inputs
to the outside world) or global (e.g., all agents do not want
to reveal their agreement value to agents outside the network).
The existence of noise parameter si provides a chance for each
agent to choose its own privacy level without affecting other
agents [22].

III. PROBLEM STATEMENT AND ALGORITHM DESIGN

A. Algorithm Design With an Event-Triggered
Mechanism

Though the algorithm (1)–(3) well prevents the information
disclosure due to the addition of random noise at each execution
procedure. There exists a nonnegligible fact that each agent has
to collect all its neighbors’ states at every time instant, which
means that real-time information communication has to be re-
mained [25]. In other words, the agents must cope with heavy
computation and communication load, which is not available

for agents only equipped with restricted microprocessors and
energy batteries.

The advent of the event-triggered mechanism offers a new
point of view on how information could be sampled and trans-
mitted. To introduce the event-triggered strategy, we first as-
sume that the sequence of event times for each agent i is
0 = ti0 , t

i
1 , t

i
2 , . . ., and the agent broadcasts its state only at its

own event times. Then, the real-time measurements from neigh-
bors are not available for each agent i. Thus, we redesign the
controller (2) and the transmitted message (3) by utilizing the
last measurements received from each neighbor j ∈ Ni as fol-
lows:

ui(t) =
∑

j∈Ni

wij (xj (t
j
kj

) − xi(tiki
)), t ∈ [tiki

, tiki +1) (4)

where

xi(tiki
) = θi(tiki

) + siηi(tiki
). (5)

Note that xi(tiki
) and xj (t

j
kj

) represent the transmitted messages
of agent i and its neighbors at their last event times, respectively.
Also θi(tiki

) and ηi(tiki
) represent the internal state and the

additional random noise of agent i at its event time, respectively.
Remark 2: Each agent i executes triggering only at its in-

dividual event time tiki
, and then, generates and transmits the

message xi(tiki
) to its neighbors. Meanwhile, agent i updates

its controller by utilizing its own and its neighbors’ transmit-
ted messages only when an event is triggered at agent i or its
neighbors. That is, in time interval [tiki

, tiki +1), the controller of
each agent i will remain unchanged as a constant until its next
triggering time instant tiki +1 comes or an event is triggered at
its neighbors. Note that the transmitted message in (5) has an
additional noise parameter si compared with (3). The reasons
are twofold: 1) this is a key trick for the design of measure-
ment error in the next section such that the measurement error
can be automatically reset to zero when an event is triggered;
and 2) the algorithms (1), (4), and (5) have better universality
compared with the algorithms (1)–(3). Specifically, when all si

equal to zero, that is, when all agents no longer need privacy
preservation, then this differentially private average algorithm
will degenerate to the common average consensus algorithm
with an event-triggered mechanism [29], [30].

Regarding the differential privacy consensus with an event-
triggered mechanism, we here provide a formal and detailed
algorithm to describe the communication process. Assume that
each agent i has a memory that can store its own instant internal
state θi(t), transmitted message xi(tiki

), and its neighbors’ trans-

mitted messages xj (t
j
kj

), j ∈ Ni . Furthermore, the initial inter-

nal states of all agents are given by θ(0) = (θ1(0), . . . , θN (0))T ,
and all the initial event time ti0 are initialized to 0. At the start
time, all agents initialize their memory and Laplacian noise, and
broadcast their own xi(0) to their neighbors. Then, each agent
implements the following algorithm at each time instant.

Remark 3: The event-triggered mechanism plays a key role
in reducing communication frequency and controller updates.
As we can see, only when an event is triggered at agent i, (5) is
calculated and broadcast to the neighbors of agent i. Meanwhile,
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Algorithm 1: The Description of Communication Algo-
rithm.

1: Agent i updates its own internal state according to
algorithm θi(t + 1) = θi(t) + hui(t) + siηi(t)

2: Generates the Laplacian noise ηi(t + 1)
3: Judges whether an event occurs or not
4: if an event is triggered then
5: updates the latest event time, i.e., tiki

= t + 1
6: generates the latest transmitted message xi(tiki

) =
θi(tiki

) + siηi(tiki
)

7: updates xi(tiki
) stored in the local memory of agent

i with the transmitted message
8: updates the controller ui(t + 1) =

∑N
j=1

wij (xj (t
j
kj

) − xi(tiki
))

9: broadcasts xi(tiki
) to the neighbors of agent i

10: else
11: keeps local memory and controller constant
12: keeps silent
13: end if
14: Agent i detects whether messages from its neighbors

are received or not
15: if a message from neighbor j is received then
16: updates xj (t

j
kj

) stored in the local memory of agent
i with the transmitted message

17: updates the controller ui(t + 1) =
∑N

j=1 wij

(xj (t
j
kj

) − xi(tiki
))

18: else
19: keeps local memory and controller constant
20: end if

once the event is triggered at agent i or agent i receives the
transmitted messages from its neighbors, the agent first updates
the copies of its own or its neighbors’ latest transmitted messages
stored in the local memory, and then, updates its controller (4)
utilizing the updated local copies of these messages. Therefore,
real-time communication and calculation are avoided compared
with the common differential privacy consensus algorithm [18],
[22]. In this event-triggered mechanism, the key is to judge
when an event should be triggered. We hence need to design an
effective event-triggering condition, which will be introduced
in the next subsection.

B. Design of Event-Triggering Condition

To introduce the event-triggering condition, we first need to
define a variable named measurement error as follows, where
t ∈ [tiki

, tiki +1):

ei(t) = xi(tiki
) − xi(t)

= θi(tiki
) + siηi(tiki

) − θi(t) − siηi(t). (6)

Note that xi(t) = θi(t) + siηi(t) can be called as a pretrans-
mission message. That is, if the current time t is not an event
time, the state xi(t) will not be transmitted even though it has
been calculated. Actually, (6) roughly describes the degree that

the current pretransmission message deviates from the transmit-
ted message at its last event time. Once the measurement error
reaches a threshold prescribed in advance, the event is triggered
and the measurement error is reset to zero automatically since
ei(t) = xi(tiki

) − xi(tiki
) = 0 at this event time.

Let A = (aij ) with aij = hwij ≥ 0, for i �= j, and aii =
1 −∑N

j=1,j �=i aij . Note that here we assume aii > 0 (by select-
ing proper h or wij ). Hence, A is stochastic since A satisfies
A1 = 1. Substituting (4)–(6) into (1), the algorithm (1) can be
rewritten as

θi(t + 1) = θi(t) + h
∑

j∈Ni

wij (xj (t
j
kj

) − xi(tiki
)) + siηi(t)

= θi(t) +
∑

j∈Ni

aij (θj (t
j
kj

) − θi(tiki
))

+
∑

j∈Ni

aij (sj ηj (t
j
kj

) − siηi(tiki
)) + siηi(t)

= θi(t) +
N∑

j=1

aij θj (t
j
kj

) − θi(tiki
)

+
N∑

j=1

aij sj ηj (t
j
kj

) − siηi(tiki
) + siηi(t)

= −ei(t) +
N∑

j=1

aij θj (t
j
kj

) +
N∑

j=1

aij sj ηj (t
j
kj

). (7)

Because each agent can only obtain its neighbors’ transmitted
messages, then the event should be calculated only depending
on local information available to each agent. We propose the
following event-triggering condition to determine the next event
time:

tiki +1 = inf
{
t ∈ N, t > tiki

|f (ei(t), x(t)) ≥ 0
}

(8)

where

f (ei(t), x(t)) = e2
i (t) −

a2
ii

16

∑

j∈Ni

aij

(
xj (t

j
kj

) − xi(tiki
)
)2

.

(9)

Remark 4: Note that (9) only depends on local information
and local parameters. In this design, not only the required state
information is local but the key parameters are also local, which
implies that the proposed algorithm (1), (4), (5) under event-
triggering condition (8) can be implemented successfully in
real communication environment where global information is
not available.

IV. MAIN RESULTS

A. Mean-Square Consensus Analysis

Due to the existence of the Laplacian random noise, the sys-
tem (1) becomes a stochastic system instead of a determin-
istic one. In this section, we mainly focus on the mean-square
consensus analysis of the algorithm (1), (4), (5) under the event-
triggering condition (8).
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Definition 1: [44] For any given initial state x(0), a stochas-
tic system is said to asymptotically achieve the mean-square
consensus if there is a random variable x∗ such that

lim
t→∞ E[xi(t) − x∗]2 = 0, i = 1, 2, . . . , N.

Theorem 1: Consider the multiagent network (1) with the
control input (4) under the event-triggering condition (8). As-
sume that the communication graph is undirected and connected,
and the transmitted message (5) is corrupted by the Lapla-
cian noise ηi(t) ∼ Lap(bi(t)) with bi(t) = ciq

t
i , ci > 0, si , qi ∈

(0, 1). Then, for any agent i ∈ {1, 2, . . . , N}
lim
t→∞ E[V (t)] = 0 ∀ θi(0) ∈ R

where V (t) =
∑N

i=1(θi(t) − 1
N

∑N
j=1 θj (t))2 is the energy

function of the consensus error.
Proof: See Appendix. �
Remark 5: This paper focuses on the fully distributed de-

sign in both the differentially private consensus algorithm and
the event-triggering conditions. Note that extending the fully
distributed design to the case of directed graphs is very chal-
lenging. First, this is partly due to the fact that the symmetric
structure of undirected graphs plays an important role in the the-
oretical analysis. Second, the symmetric structure of undirected
graphs plays a key role in the derivation of fully distributed
event-triggering conditions. In fact, the asymmetric structure of
directed graphs might lead to a poor result that the key param-
eters of the event-triggering conditions are dependent on the
algebraic connectivity of the Laplacian matrix L, which means
that the fully distributed design (not only the consensus algo-
rithm itself but the event-triggering conditions) in this paper will
be broken since the Laplacian matrix L depends on the global
information of the whole network.

Remark 6: Regarding Zeno behaviors (occurring infinite
times in a finite-time interval), it is worth emphasizing that these
behaviors only might happen in a hybrid system rather than in a
discrete-time system. Note that our main algorithm is modeled
as a discrete-time iteration with a constant sampling interval,
which means that the smallest event time interval in this paper
is actually one step size. That is, the event will be triggered at
each sampling time instant in the worst-case scenario, and even
so, the number of event-triggering times is still finite in a finite-
time interval. Thus, the Zeno behaviors will not happen, that is,
the triggering events will not blow up in this paper.

B. Accuracy Analysis

In general, the common average consensus algorithm [13]
can converge to the average of the initial states deterministi-
cally. However, the algorithm (1), (4), (5) cannot surely reach
the exact initial average due to the intrinsic property of the differ-
ential privacy mechanism [22]. Therefore, we further establish
the statistic properties of the agreement value corresponding to
the algorithm (1), (4), (5) under the event-triggered mechanism
in this section.

Definition 2: [18] For any given initial state x(0), p ∈
(0, 1), r ∈ R≥0 , a stochastic system is said to achieve (p, r)-

accuracy if the agreement trajectory converges to a random
variable x∗ with a bounded dispersion r with probability at least
1 − p.

Corollary 2: The proposed differential consensus system
achieves

(

p,
1
N

√
2
p

∑N

i=1

s2
i c

2
i

1 − q2
i

)

accuracy and the convergence point θ∞ is an unbiased estimate
of their initial state average Ave(θ(0)).

Proof: Equations (1) and (4)–(6) can be written in a com-
pact matrix form as

θ(t + 1) = (I − hL)θ(t) + (I − hL)Sη(t) − hLe(t) (10)

where θ(t)=(θ1(t), . . . , θN (t))T , η(t)=(η1(t), . . . , ηN(t))T ,
S = diag(s1 , . . . , sN ), and e(t) = (e1(t), . . . , eN (t))T .

Let JN =
( 1

N

)
11T ∈ RN ×N . Note that JN L = 0. Multi-

plying JN by the both sides of (10), we have JN θ(t + 1) =
JN (θ(t) + Sη(t)), which is equivalent to

1
N

N∑

i=1

θi(t + 1) =
1
N

N∑

i=1

θi(t) +
1
N

N∑

i=1

siηi(t)

=
1
N

N∑

i=1

θi(0) +
1
N

t∑

k=0

N∑

i=1

siηi(k)

i.e.,

Ave(θ(t)) = Ave(θ(0)) +
1
N

N∑

i=1

t−1∑

k=0

siηi(k). (11)

Then, we get the convergence point θ∞ = limt→∞ Ave(θ(t)).
Since the noise ηi(t) ∼ Lap(bi(t)) with bi(t) = ciq

t
i , qi ∈

(0, 1), according to Lemma 1, we have E[ηi(t)] = 0, V [ηi(t)] =
E[η2

i (t)] = 2c2
i q

2t
i . Thus, we can further obtain

E[θ∞] = E[Ave(θ(0))]

V [θ∞] =
2

N 2

N∑

i=1

s2
i c

2
i

1 − q2
i

. (12)

By Lemma 2, we have

P{|θ∞ − Ave(θ(0))| < r} ≥ 1 − V [θ∞]
r2 .

Choosing r = 1
N

√
2
p

∑N
i=1

s2
i c2

i

1−q 2
i

, we thus have P{|θ∞ − Ave

(θ(0))| < r} ≥ 1 − p. The proof is completed. �
Remark 7: Actually, Definition 2 and Corollary 2 show

that the agreement value θ∞ in this paper is not the exact initial
average. Instead, it is just a random variable falling into the
nearby range of the initial average with a bounded deviation
even if the expectation of θ∞ equals to the initial average.

C. Differential Privacy Analysis

In this section, we will give some definitions and analysis
on the notion of the differential privacy introduced in [15],
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[18], and [22]. For a multiagent network, the agents asymp-
totically converge to an agreement value via exchanging mes-
sages with each other. During this information exchange, the
transmitted messages constitute the observable parts for adver-
saries. By contrast, the internal states and the additional random
noise are not available for adversaries. For simplicity, we de-
note all possible observation sequence and noise sequence as
x = {x(0), x(1), . . .} and η = {η(0), η(1), . . .}, where x(t) =
(x1(t), . . . , xN (t))T and η(t) is defined after (10). Given an
initial state θ(0) defined after (10), x is uniquely determined by
the noise sequence η due to the algorithm (5). Thus, we denote
Xθ(0)(η) = {x(0), x(1), . . .} as the corresponding observation
sequence. Considering the internal state sequence and noise se-
quence, we denote Eθ(0)(η) = {(θ(0), η(0)), (θ(1), η(1)), . . .}
as the corresponding execution sequence. Then, for another ini-
tial state θ′(0) with the noise sequence η′, the corresponding
observation sequence and execution sequence can be denoted
as Xθ ′(0)(η′) and Eθ ′(0)(η′), respectively.

Definition 3: [15] For any given δ ∈ R≥0 , the vectors x, x′

are called δ-adjacent if there exists one k ∈ {1, 2, . . . , N} such
that

|xi − x′
i | ≤

{
δ, i = k
0, i �= k

for i ∈ {1, 2, . . . , N}.
Definition 4: [18], [22] For any given pair of δ-adjacent

initial states θ(0), θ′(0), a stochastic system is said to preserve
the ε-differential privacy if for any sets of observation sequence
and noise sequence O,Ω ⊂ (RN )N

P{Xθ(0)(η) ∈ O|η ∈ Ω} ≤ eεδP{Xθ ′(0)(η′) ∈ O|η′ ∈ Ω}.

Remark 8: Intuitively speaking, the differential privacy
mechanism ensures that the presence or absence of any individ-
ual agent has no significant effect on the output of the execution
algorithm (1)–(3). That is, any pair of initial states θ(0) and
θ′(0) only one component being different will lead to the same
observation sequence in large probability. Consequently, the ad-
versaries who steal information from the observation sequence
cannot infer and threaten the privacy of initial states of the indi-
vidual participants.

Corollary 3: The proposed algorithm (1), (4), (5) preserves
the εi-differential privacy for agent i ∈ {1, . . . , N} with

εi =
qi

ci(qi + si − 1)
.

From the view of the whole network, the privacy level is ε =
maxi(εi).

Proof: Considering any pair of δ-adjacent initial states
θ(0), θ′(0), we assume θk (0) = θ′k (0) + δ for some agent k ∈
{1, . . . , N} and θi(0) = θ′i(0) for all i �= k. Then, we define a
bijection between Eθ(0)(η) and Eθ ′(0)(η′), where

η′
i(t) =

{
ηi(t) + δ

si
(1 − si)t , i = k

ηi(t), i �= k.

Letting

Xθ(0)(η) = {x(0), . . . , x(T )} = {ρ0 , . . . , ρT }
Xθ ′(0)(η′) = {x′(0), . . . , x′(T )} = {ρ′0 , . . . , ρ′T }

we can easily get Xθ(0)(η) = Xθ ′(0)(η′) according to the math-
ematical induction under the aforementioned bijection.

Note that the equality Xθ(0)(η) = Xθ ′(0)(η′) implies that the
two observation sequences corresponding to the δ-adjacent ini-
tial states are indistinguishable for malicious adversaries. That
is, the adversaries cannot infer any agent’s initial state by ob-
serving and analyzing the difference between the outputs corre-
sponding to the two δ-adjacent initial states.

Next, we first calculate the joint probability density function
as follows:

f(Xθ(0)(η) ∈ O) =
T∏

t=0

f(ρt |ρ0 , . . . , ρt−1)

f(Xθ ′(0)(η′) ∈ O) =
T∏

t=0

f(ρ′t |ρ′0 , . . . , ρ′t−1).

For any given initial state θ(0), the transmitted message x(t) is
uniquely determined by η(t) and the random noise ηi(t) belongs
to the i.i.d Laplacian distribution ηi(t) ∼ Lap(bi(t)). Thus, we
have the joint Laplace probability density function

f(Xθ(0)(η) ∈ O) =
T∏

t=0

N∏

i=1

L(ηi(t))

f(Xθ ′(0)(η′) ∈ O) =
T∏

t=0

N∏

i=1

L(η′
i(t)). (13)

Therefore, we further have as T → ∞
f(Xθ(0)(η) ∈ O)
f(Xθ ′(0)(η′) ∈ O)

=
∏T

t=0
∏N

i=1 L(ηi(t))
∏T

t=0
∏N

i=1 L(η′
i(t))

=
∏T

t=0 L(ηk (t))
∏T

t=0 L(η′
k (t))

=
T∏

t=0

e

|η ′
k

( t ) |−|η k ( t ) |
c k q t

k

≤
T∏

t=0

e

|η ′
k

( t )−η k ( t ) |
c k q t

k =
T∏

t=0

e
δ

c k

(
1−s k

q k

) t

= eεk δ . (14)

Then, integrating the both sides, we obtain the probability

P{Xθ(0)(η) ∈ O} ≤ eεk δP{Xθ ′(0)(η′) ∈ O} (15)

where εk = qk

ck (qk +sk −1) , qk ∈ (1 − sk , 1), which implies that
the privacy level of agent k is εk . Note that agent k can be any
agent in the network, which implies that each agent i can select
its own privacy level εi . The proof is completed. �

Remark 9: Note that the practical significance of the as-
sumption θk (0) = θ′k (0) + δ in the proof of Corollary 3 means
that the maximum difference between two initial state sets
θ(0) and θ′(0) is δ in the worst-case scenario, where the other
N − 1 agents collude with each other to attack any agent k.
Corollary 3 implies that the proposed consensus algorithm can
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Fig. 1. Weighted interaction network with six agents.

Fig. 2. Internal state evolution of agent i, i = 1, 2, . . . , 6.

ensure that the δ-adjacent initial state sets θ(0) and θ′(0) can
produce a pair of similar distributions whose statistical differ-
ence is dependent on the prescribed εi for any given δ.

Remark 10: According to the maximum information prin-
ciple in the security literature, we assume that the adversaries
can listen to all possible transmitted message sequences, that
is, the agents evolve and transmit their messages at every time
instant. The aforementioned results declare that the differential
privacy properties can be well preserved even if the assump-
tion is in an extreme condition. Therefore, the adversaries who
can only listen to a part or a subset of all possible transmit-
ted message sequence Xθ(0)(η) = {x(0), x(1), . . .} under the
event-triggered mechanism cannot infer any agent’s initial state.
In other words, the proposed event-triggered strategy has no im-
pact on the privacy preservation while the execution efficiency
of the whole network is largely improved.

V. SIMULATIONS

In this section, we provide some simulations to illus-
trate the proposed event-triggered mechanism. Considering the
communication network with graph G given in Fig. 1, and
the initial internal state θ(0) = (8.2632,−5.5434,−3.0639,
−1.8427, 6.4439, 3.0425), which is randomly generated in the
interval [−10, 10]. As for the parameter values, we set ci =
0.2, qi = 0.1, and si = 0.99.

Fig. 2 shows the internal state evolutions of all agents. It is
worth emphasizing that the simulation here does not achieve
a common average consensus in which the real-time average

Fig. 3. Histogram of agreement values.

Fig. 4. Controller evolution of agent i, i = 1, 2, . . . , 6.

Fig. 5. Evolution of the measurement error and threshold.
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Fig. 6. Event triggering times of agent i, i = 1, 2, . . . , 6.

Fig. 7. Observation sequences x(t), x′(t) of δ-adjacent initial states θ(0) and θ′(0).

state of all agents remains constant and this constant value
equals to the initial average state. In contrast, the real-time
average state in this paper is time varying and the final agree-
ment value does not always equal to the initial average state.
Specifically, the real-time average state θ̄(t) denoted by a black
line in Fig. 2 is obviously disturbed at initial time, and then,
tends to be stable after some iterations. The statistical distri-
bution of agreement values with 106 runs is shown in Fig. 3,
which shows that the agreement values mainly fall into the
range [0.8, 1.6] and the histogram appears to be a bell-shaped
curve with a mean exactly at the true initial average indicated
by a brown line. Note that the reason that the real-time aver-
age state θ̄(t) is first disturbed, and then, stable is due to the
addition of the Laplace noise with a 0-mean and a diminishing
scale function bi(t) = ciq

t
i , qi ∈ (0, 1) (0-mean ensures that all

the additional noise will offset each other in distribution and
bi(t) ensures that the additional noise is diminishing as time
goes on).

Fig. 4 shows the controller state evolutions of all agents,
from which we can see that the control signals are piecewise
constants. The evolution of the measurement error of agent 1 is
shown in Fig. 5, in which |e1(t)| is the measurement error of

agent 1 and |e1,max(t)| = ai i

4

√∑
j∈Ni

aij (xj (t
j
kj

) − xi(tiki
))2

TABLE I
STATISTICS OF EVENT TIMES

Agent No. Event Times Total Times Rate

1 72 250 28.8%
2 23 250 9.2%
3 69 250 27.6%
4 76 250 30.4%
5 23 250 9.2%
6 64 250 25.6%

is the specified maximum threshold. In Fig. 6, the events of
each agent are marked in time interval [0, 250], from which
we can see that the sampling is sporadic rather than consec-
utive. Regarding of the execution efficiency, we further count
the event times or the communication frequency for each agent
as described in Table I. The average communication frequency
is 53.5 compared with the total time 250, which implies the
average communication rate between agents is just 21.4%.

To illustrate the differential privacy properties, we assume
that the agents communicate with each other at every time
instant. Also the δ-adjacent initial states θ(0) and θ′(0) are
same except agent 1’s state. For example, let θ(0) = (8.2632,
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−5.5434,−3.0639,−1.8427, 6.4439, 3.0425) versus θ′(0) =
(0,−5.5434,−3.0639,−1.8427, 6.4439, 3.0425). Then, we get
δ = 8.2632. Fig. 7 visually shows the observation sequences
x(t) and x′(t) corresponding to the δ-adjacent initial states
θ(0) and θ′(0), respectively. We can obviously see that these
two observation sequences are exactly fitted, which implies that
they are indistinguishable for malicious adversaries.

VI. CONCLUSION

In this paper, we studied the privacy preserving problem of
initial states for multiagent networks by employing the differ-
ential privacy mechanism and the distributed event-triggering
strategy. We first developed a differentially private consensus
algorithm combined with an event-triggering strategy against
frequent real-time communication and controller updates. Fur-
thermore, we proposed a distributed event-triggering condition
that only depends on local state information and local parame-
ters. In addition, the convergence analysis of the mean-square
average consensus was given to explain the sufficiency of the
proposed algorithm and event condition. Finally, we also es-
tablished the statistic properties of the convergent accuracy and
differential privacy. In the future, we intend to further investi-
gate issues such as the effect of the communication topology on
the convergence rate, switching topologies, and time delays in
differentially private consensus with an event-triggered mecha-
nism.

APPENDIX

A. Proof of Theorem 1

Proof: Defining the consensus error

δi(t) = θi(t) − 1
N

N∑

j=1

θj (t)

then combining with (7), we have

δi(t + 1) = T1 − 1
N

N∑

j=1

θj (t) − 1
N

N∑

j=1

sj ηj (t)

where

T1 = −ei(t) +
N∑

j=1

aij θj (t
j
kj

) +
N∑

j=1

aij sj ηj (t
j
kj

).

Consider the Lyapunov functional candidate V (t) =
∑N

i=1
δ2
i (t). Note that for any i, j ∈ {1, 2, . . . , N}

1) θi(t) and ηj (t) are independent of each other;
2) for i �= j, ηi(t) and ηj (t) are independent of each other;
3) the Laplacian noise mean E[ηi(t)] = 0.
Thus, we have

E[ΔV ] = E [V (t + 1) − V (t)]

= E[ΔV1 + ΔV2 + ΔV3 ] (16)

where

ΔV1 =
N∑

i=1

(
T 2

1 − θ2
i (t)

)

ΔV2 =
N∑

i=1

⎛

⎝ 1
N 2

N∑

j=1

s2
j η

2
j (t) − 2

N
s2

i η
2
i (t)

⎞

⎠

ΔV3 =
2
N

N∑

i=1

⎛

⎝ei(t) + θi(t) −
N∑

j=1

aij θj (t
j
kj

)

⎞

⎠
N∑

j=1

θj (t).

Now we simplify the term E[ΔV1 ] as

E[ΔV1 ]

= E

⎡

⎣
N∑

i=1

⎛

⎝T2 +

⎛

⎝
N∑

j=1

aij sj ηj (t
j
kj

)

⎞

⎠

2

−2ei(t)
N∑

j=1

aij sj ηj (t
j
kj

)

⎞

⎠

⎤

⎦ (17)

where

T2 = e2
i (t) − 2

N∑

j=1

aij ei(t)θj (t
j
kj

) +

⎛

⎝
N∑

j=1

aij θj (t
j
kj

)

⎞

⎠

2

− θ2
i (t).

Since
⎛

⎝
N∑

j=1

aij θj (t
j
kj

)

⎞

⎠

2

=
N∑

j=1

a2
ij θ

2
j (tjkj

) + 2
N −1∑

j=1

∑

l>j

aij ailθj (t
j
kj

)θl(tlkl
) (18)

N∑

j=1

aij ei(t)θj (t
j
kj

)

=
N∑

j=1,j �=i

aij ei(t)θj (t
j
kj

) +

⎛

⎝1 −
N∑

j=1,j �=i

aij

⎞

⎠ ei(t)θi(tiki
)

=
N∑

j=1,j �=i

aij ei(t)
(
θj (t

j
kj

) − θi(tiki
)
)

+ ei(t)θi(tiki
) (19)

we have

T2 = T3 + T4 + T5 + T6

where

T3 =
N∑

j=1

a2
ij θ

2
j (tjkj

) +
N −1∑

j=1

∑

l>j

aij ail

(
θ2

j (tjkj
) + θ2

l (tlkl
)
)

T4 =
N −1∑

j=1

∑

l>j

aij ail

(
−θ2

j (tjkj
) − θ2

l (tlkl
) + 2θj (t

j
kj

)θl(tlkl
)
)
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T5 = −2
N∑

j=1,j �=i

aij ei(t)
(
θj (t

j
kj

) − θi(tiki
)
)

T6 = e2
i (t) − θ2

i (t) − 2ei(t)θi(tiki
).

Since

T3 =
N∑

j=1

a2
ij θ

2
j (tjkj

) +
N∑

j=1

∑

l=1,l �=j

aij ailθ
2
j (tjkj

)

=
N∑

j=1

aij θ
2
j (tjkj

) (20)

T4 = −
N −1∑

j=1

∑

l>j

aij ail

(
θj (t

j
kj

) − θl(tlkl
)
)2

= −
N −1∑

j=1,j �=i

∑

l>j,l �=i

aij ail

(
θj (t

j
kj

) − θl(tlkl
)
)2

−
N∑

j=1,j �=i

aij aii

(
θj (t

j
kj

) − θi(tiki
)
)2

≤ −
N∑

j=1,j �=i

aij aii

(
θj (t

j
kj

) − θi(tiki
)
)2

T5 ≤
N∑

j=1,j �=i

aij

(
1
αi

e2
i (t) + αi

(
θj (t

j
kj

) − θi(tiki
)
)2
)

(21)

T6 = e2
i (t) −

(
θi(tiki

) + siηi(tiki
) − ei(t) − siηi(t)

)2

− 2ei(t)θi(tiki
)

= −θ2
i (tiki

) − s2
i η

2
i (tiki

) − 2θi(tiki
)siηi(tiki

)

+ 2siηi(tiki
)ei(t) − s2

i η
2
i (t) + 2θi(tiki

)siηi(t)

+ 2siηi(tiki
)siηi(t) − 2ei(t)siηi(t)

we have

N∑

i=1

T2 ≤
N∑

i=1

N∑

j=1,j �=i

aij

(
1
αi

e2
i (t)

+(αi − aii)
(
θj (t

j
kj

) − θi(tiki
)
)2
)

+
N∑

i=1

(−s2
i η

2
i (tiki

) − 2θi(tiki
)siηi(tiki

)

+ 2siηi(tiki
)ei(t) − s2

i η
2
i (t) + 2θi(tiki

)siηi(t)

+2siηi(tiki
)siηi(t) − 2ei(t)siηi(t)

)
. (22)

Using similar simplification as in (18), (20) and (19), (21),
we have

⎛

⎝
N∑

j=1

aij sj ηj (t
j
kj

)

⎞

⎠

2

≤
N∑

j=1

aij s
2
j η

2
j (tjkj

) −
N∑

j=1,j �=i

aij aii

(
sj ηj (t

j
kj

) − siηi(tiki
)
)2

(23)

− 2ei(t)
N∑

j=1

aij sj ηj (t
j
kj

)

≤
N∑

j=1,j �=i

aij

(
1
αi

e2
i (t) + αi

(
sj ηj (t

j
kj

) − siηi(tiki
)
)2
)

− 2ei(t)siηi(tiki
). (24)

Substituting (22)–(24) into (17), we have

E[ΔV1 ] =
N∑

i=1

(
T 2

1 − θ2
i (t)

)

≤ E

⎡

⎣
N∑

i=1

⎧
⎨

⎩

2
αi

e2
i (t) −

N∑

j=1,j �=i

aij (aii − αi)
[(

θj (t
j
kj

) − θi(tiki
)
)2

+
(
sj ηj (t

j
kj

) − siηi(tiki
)
)2
]

+ s2
i η

2
i (t)
}]

. (25)

Since the noise ηi(t) ∼ Lap(bi(t)) with bi(t) = ciq
t
i , qi ∈

(0, 1), according to Lemma 1, we have E[η2
i (t)] = V [ηi(t)] =

2c2
i q

2t
i , and thus

E[ΔV2 ] =
N∑

i=1

⎛

⎝ 2
N 2

N∑

j=1

s2
j c

2
j q

2t
j − 4

N
s2

i c
2
i q

2t
i

⎞

⎠

= − 2
N

N∑

i=1

s2
i c

2
i q

2t
i

≤ 0 (26)

E[ΔV3 ]

=
2
N

E

[
N∑

i=1

(
θi(tiki

) + siηi(tiki
) − θi(t) − siηi(t)

+ θi(t) −
N∑

j=1

aij θj (t
j
kj

)

⎞

⎠
N∑

j=1

θj (t)

⎤

⎦

=
2
N

E

⎡

⎣

⎛

⎝
N∑

i=1

θi(tiki
) −

N∑

j=1

θj (t
j
kj

)

⎞

⎠
N∑

j=1

θj (t)

⎤

⎦

= 0. (27)
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Combining (16) with (25)–(27), we have

E[ΔV ] = E[ΔV1 + ΔV2 + ΔV3 ]

≤ E

⎡

⎣
N∑

i=1

⎧
⎨

⎩

2
αi

e2
i (t) −

N∑

j∈Ni

aij (aii − αi)
[(

θj (t
j
kj

) − θi(tiki
)
)2

+
(
sj ηj (t

j
kj

) − siηi(tiki
)
)2
]

+ s2
i η

2
i (t)

}]

≤ E

[
N∑

i=1

g(ei(t), x(tk )) +
N∑

i=1

s2
i η

2
i (t)

]

(28)

where

g(ei(t), x(tk ))

=
2
αi

e2
i (t) −

1
2

∑

j∈Ni

aij (aii − αi)
(
xj (t

j
kj

) − xi(tiki
)
)2

.

Then, enumerating and calculating the sums of both sides in
(28), we can further have as t → ∞

E[V (t)] − E[V (0)]

≤ E

[
N∑

i=1

t−1∑

k=0

g(ei(k), x(tk ))

]

+ 2
N∑

i=1

c2
i s

2
i

1 − q2
i

. (29)

Note that the event-triggering condition (8) is implemented,
we have

e2
i (t) ≤

1
4

∑

j∈Ni

aijαi(aii − αi)
(
xj (t

j
kj

) − xi(tiki
)
)2

where αi = aii/2. Thus, we further have g(ei(t), x(tk )) ≤ 0.
Since E[g(ei(t), x(tk ))] ≤ 0, E[V (t)] ≥ 0, from (29), it can

be seen that the terms E[V (t)] and E[g(ei(t), x(tk ))] are both
bounded. Therefore, there must exist a positive real number
0 < c < 1 before achieving consensus such that

E[V (t + 1)] ≤ E

[

(1 − c)V (t) +
N∑

i=1

s2
i η

2
i (t)

]

. (30)

As t → ∞, the contribution of the first term in (30) converges
to 0, and the second term in (30) given by

∑N
i=1 E[s2

i η
2
i (t)] =

2
∑N

i=1 c2
i s

2
i q

2t
i also converges to 0. Thus, for any i ∈

1, 2, . . . , N , we have lim E[V (t)] = 0, t → ∞. The proof is
completed. �
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