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Abstract— This paper is concerned with the study of robust
distributed average tracking (DAT) algorithms for networked
control systems in the presence of external disturbances or
false data injection attacks (FDIAs). To eliminate the impacts
of external disturbances and FDIAs, the technologies of
disturbance-observer-based control (DOBC) and active distur-
bance rejection control (ADRC) are introduced into the context
of DAT problems. First, for a class of external disturbances with
known dynamics, we propose an anti-disturbance DAT (AD-DAT)
algorithm, where a stand-alone disturbance observer based on
the idea of DOBC is employed to estimate the disturbance
and then to compensate it in the design of control inputs. The
proposed AD-DAT algorithm can track the average of multiple
time-varying reference signals with zero steady-state error and
the accurate tracking is robust with respect to initialization
constraints. Furthermore, for another class of FDIAs with
unknown dynamics, we design an anti-attack DAT (AA-DAT)
algorithm where the control input is based on the estimates of
states instead of original states, and construct an extended state
observer including a state observer and an FDIAs observer based
on the idea of ADRC. The extended state observer plays a key
role in estimating and eliminating the impact of FDIAs without
compromising the accurate tracking performance. In addition,
sufficient conditions are derived for the proposed two algorithms
from a theoretical point of view to guarantee accurate average
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tracking. Finally, some numerical examples are given to illustrate
the validity and effectiveness of the proposed algorithms.

Note to Practitioners—This paper is motivated by the problem
of robust distributed average tracking (DAT) for the time-varying
centroid of the formation of a group of autonomous vehicles. The
problem arises in the scenario where two groups of unmanned
ground vehicles (UGVs) and unmanned aerial vehicles (UAVs)
perform a combined surveillance-reconnaissance mission (where
the UAVs aim to provide aerial coverage and early warning
against threats for the UGVs, as shown in Fig. 1) in an uncertain
environment where the external disturbances might exist or the
FDIAs might be launched by adversaries. Obviously, the tracking
accuracy of the target signal will be compromised in the presence
of external disturbances or FDIAs. However, most existing works
for disturbance rejection mainly focused on the static average
consensus rather than the dynamic one even though a few works
mentioned the DAT problem with only considering the case of
external disturbances. Based on this, we propose an AD-DAT
algorithm and an AA-DAT algorithm for the DAT problem
based on the ideas of DOBC and ADRC, respectively. Numerical
examples show that the proposed algorithms are able to estimate
and eliminate the impacts of the external disturbances and the
FDIAs, which implies that the algorithms can be implemented in
practical scenarios. In future research, we will extend the results
to more general scenarios in the presence of external disturbances
and FDIAs.

Index Terms— Distributed average tracking, dynamic aver-
age consensus, disturbance observers, false data injection,
disturbance-observer-based control, active disturbance rejection
control.

I. INTRODUCTION

RECENT years have witnessed great advances in sens-
ing, computing and communication technologies, which

motivates the study of how to control a team of autonomous
robots to complete complex tasks cooperatively. In a multi-
robot system, each robot usually needs to track or estimate
the global performance simultaneously through local commu-
nication in order to adjust its own motion to improve the
global control performance [1]. For example, consider a com-
bined surveillance-reconnaissance mission which involves two
groups of unmanned vehicles (ground and aerial), as shown in
Fig. 1. In such a scenario, the two groups of unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs) are
sent to establish a safe corridor cooperatively through hostile
areas. The UGVs move in formation to clear a path through
this area and the UAVs provide aerial coverage and early
warning against threats for the UGVs. To achieve this goal,
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Fig. 1. Two groups of unmanned ground vehicles (UGVs) and unmanned
aerial vehicles (UAVs) perform a combined surveillance-reconnaissance mis-
sion, where the UAVs aim to provide aerial coverage and early warning against
threats for the UGVs.

one key point is to guarantee that the UAVs are able to track
the time-varying centroid of the UGV formation so that the
UAVs can adjust their flight orbits to fully cover the moving
UGVs.

The aforementioned problem, typically known as distributed
average tracking1 (DAT), aims to develop a control algorithm
that enables each agent to track the average of multiple
time-varying reference signals through local interaction among
agents. The first work of DAT is given in [2], where a
dynamic consensus algorithm is proposed to estimate the
average of dynamic inputs with nonzero steady-state error
under prescribed initialization constraints. To eliminate the ini-
tialization constraints, two algorithms named proportional (P)
and proportional-integral (PI) are developed in [3]. The PI is
further developed in [4], where the dynamic consensus can be
achieved with zero steady-state error for some special classes
of reference signals (e.g., polynomial signals with known
orders and sinusoidal signals with known frequencies). For
general time-varying input signals with bounded derivatives,
a discontinuous sign function is introduced in [5] to achieve
accurate tracking with zero steady-state error in finite time.
In order to achieve zero steady-state error as well as initializa-
tion robustness, two robust DAT algorithms for both undirected
and directed networks are developed in [6]. The dynamic
weighted average consensus algorithms with finite-time con-
vergence are studied in [7] and [8]. An algorithm for robust
exact dynamic consensus of high order is also proposed in [9].
For the study of discrete-time algorithms, a first-order and a
higher-order algorithm are proposed to achieve the DAT with
a nonzero steady-state error under prescribed initial conditions
in [10] and [11]. A multi-stage discrete time and randomized
algorithm with small and bounded error is proposed in [12]
and the accelerated version is proposed in [13]. To achieve
initialization robustness, a robust discrete-time DAT algorithm
with an arbitrarily small steady-state error is proposed in [14]
by introducing a time-varying sequence of damping factors.
A robust nonlinear estimator for DAT is also proposed in [15]

1It can also be called dynamic average consensus (DAC) in other literature.
Here we use the term distributed average tracking (DAT) to emphasize the
tracking nature of the problem.

to achieve small steady-state errors for slowly-varying inputs
with an improved convergence rate. Also, the DAT problem
has gained numerous extended studies on the Euler-Lagrange
dynamics [16], double-integrator systems [17], [18], [19],
formation control [20], [21], event-triggered control [22],
[23], [24], uncertain directed topologies [25], distributed opti-
mizaition [26], and privacy preservation [27], [28].

However, most of existing works about DAT problems do
not consider the impact of external disturbances and false
data injection attacks (FDIAs) even though the disturbances
and malicious attacks widely exist in practical networked sys-
tems. Generally speaking, if external disturbances are injected
into the control input of a control system, the final control
performance will be compromised. To solve this limitation,
an intuitive idea is to estimate the disturbance and then to
compensate it in the design of control inputs. Based on this
idea, a method named DOBC is proposed in [29] and [30]. For
multi-agent systems, although there are numerous works [31],
[32], [33], [34], [35], [36], [37], [38], [39] that focus on the
study of disturbance rejection, they cannot be directly applied
to the DAT problem, or have to face strong assumptions and
low robustness. In particular, the works [31], [32], [33], [36],
[37], [38], [39] are concerned with disturbance rejection in
the context of static consensus and leader-follower consen-
sus, respectively, rather than the DAT problem in our work.
The work [34] proposes a disturbance rejection scheme for
DAT problem, however, there exist several limitations: 1) A
strong assumption about the time-varying reference signal is
required, which plays a key role in achieving zero steady-
state error. 2) The derivative of the reference signal needs to
be known in designing the anti-disturbance DAT algorithm,
which might be impossible in practical applications. 3) The
proposed anti-disturbance DAT algorithm is non-robust since
the initialization of the internal state needs to satisfy some
prescribed conditions. In [35], a state feedback controller
and an observer-based feedback controller are proposed to
reject the external disturbance for DAT problem. However,
it is worth emphasizing that the time-varying reference signal
mentioned in [35] is a class of prescribed reference inputs
with specific dynamics models. Besides, another additional
limitation is that the dynamics of both the reference inputs
and the external disturbances have the same linear structure,
except for the parameters. Also, the anti-disturbance control
and event-triggered control for delayed stochastic systems can
be found in [40] and [41]. On the other hand, the FDIAs that
can be seen as a kind of deception attacks, aim to corrupt the
original signal received or be utilized by objective systems.
To reduce the impact of FDIAs, some passive methods are
developed by adjusting the control gain or frequency in [42]
and [43] and the active attack compensation methods are
introduced in [44] and [45] to achieve bounded consensus.
Besides, the FDIAs can be modeled as unknown external
disturbances, which are further studied in [46] and [47] by
employing an extended state observer based on the idea of
ADRC in [48] to estimate both the local state and the FDIAs.
Also, the event-based control against deception attacks for
nonlinear complex networks and cyber-physical systems is
mentioned in [49] and [50].
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Motivated by the aforementioned works, this work aims to
overcome the impacts of external disturbances and FDIAs in
DAT by using the ideas of DOBC and ADRC, respectively.
Compared to the traditional DOBC and ADRC in the context
of static consensus or leader-follower consensus, the target
signal to be tracked in DAT is based on multiple time-varying
reference signals, rather than a group of static signals (in
static consensus) or a single prescribed time-varying signal (in
leader-follower consensus), which implies that the real-time
and accuracy requirements in DAT are higher than in static
consensus and leader-follower consensus. Based on this, a sign
function with nonlinear and discontinuous characteristics is
introduced in the design of control inputs compared to the
linear and continuous dynamics models in static consensus
and leader-follower consensus. To overcome the difficulties
caused by the nonlinear and discontinuous dynamics models
and the adverse impacts of external disturbances or attacks,
it is necessary to design appropriate system control inputs
and disturbance observers to estimate and compensate for the
disturbances or attacks. Also, it is necessary to provide a new
feasibility analysis for the proposed solution.

The main contributions are summarized as follows. First,
for a class of external disturbances with known dynamics,
we propose an AD-DAT algorithm, in which a disturbance
compensation term is introduced to offset the external dis-
turbance. To estimate the external disturbance, a stand-alone
disturbance observer is proposed based on the idea of DOBC.
The proposed AD-DAT algorithm guarantees that the average
of multiple time-varying reference signals can be tracked
with zero steady-state error even though there exist external
disturbances in the execution of the algorithm. Furthermore,
for FDIAs launched by adversaries, the FDIAs are modeled as
unknown external disturbances and the AA-DAT algorithm is
proposed by utilizing the estimates of states instead of original
states in the design of control inputs. The proposed AA-DAT
algorithm is equipped with an extended state observer which
includes a state observer and an FDIA observer so that the
impact of FDIAs can be eliminated by introducing compensa-
tion terms in the design of control inputs. In addition, for the
proposed two algorithms, asymptotic convergence analyses are
given to guarantee accurate average tracking from a theoretical
point of view. Finally, some numerical examples are provided
to illustrate the validity of the proposed algorithms.

The paper is organized as follows. Section II declares
some preliminaries and the problem formulation. Section III
provides the detailed algorithm design and convergence anal-
ysis for the robust distributed average tracking with external
disturbances. For the case of false data injection attacks,
the algorithm design and convergence analysis are given
in Section IV. Some numerical examples are provided in
Section V to illustrate the proposed algorithms. Finally, the
paper is concluded in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

The set of real numbers and positive real numbers are
denoted by R and R+, respectively. The set of n × m-
dimensional real matrices is denoted by Rn×m and the set

of n-dimensional real column vectors is denoted by Rn . The
identity matrix and zero matrix of n × n dimensions are
indicated by In and On , respectively. The 1 vector and 0 vector
containing N entries are denoted by 1N and 0N , respectively.
The transposes of a vector v and a matrix M are denoted
by vT and MT , respectively. For p ∈ [1,∞], the p-norm of
a vector x is denoted by ||x ||p and || · ||p is often written
as || · || in the case of p = 2. The cardinality of a set S
is indicated as |S|. Let sgn{·} denote the sign function and
sgn{x} ≜ [sgn{x1}, . . . , sgn{xn}]

T for ∀x ∈ Rn . The L∞-norm
of a piecewise continuous and bounded vector function f (t)
is defined as || f (t)||∞ = supt≥0 || f (t)|| < ∞ and the space
is denoted by L∞. The Lp-norm of a piecewise continuous
function f (t) is defined as || f (t)||p = (

∫
∞

0 || f (t)||pdt)1/p <

∞ and the space is denoted by Lp, where 1 ≤ p < ∞.

B. Graph Theory

A connected undirected graph with N nodes is denoted by
G (V, E), where the node set and the edge set are denoted
by V = {v1, v2, . . . , vN } and E = V × V , respectively. The
neighbor set of node i and its cardinality are represented by
Ni =

{
v j ∈ V :

(
vi , v j

)
∈ E

}
and Ni = |Ni |, respectively.

The adjacency matrix of G is defined as A =
(
ai j

)
∈ RN×N

with entries of ai j = a j i = 1 if
(
vi , v j

)
∈ E , and ai j =

a j i = 0 otherwise. The Laplacian matrix of graph G is defined
as L =

(
li j

)
∈ RN×N with entries li j = −ai j , i ̸= j

and li i =
∑N

j=1, j ̸=i ai j . Here L is a symmetric positive
semidefinite matrix and its eigenvalues can be represented by
0 = λ1 < λ2 ≤ · · · ≤ λN in ascending order. The incidence
matrix of graph G is defined as B = (bi j ) ∈ {−1, 0, 1}

N×ℓ

with entries bi j = −1 if edge e j leaves node vi , bi j = 1 if
edge e j enters node vi , and bi j = 0 otherwise.

C. Distributed Average Tracking (DAT)

Considering a networked multi-agent system composed of
N agents, the linear dynamics of each agent i is described as
follows

ẋi (t) = Exi (t)+ Fui (t), i = 1, . . . , N , (1)

where xi (t) ∈ Rp is the state, ui (t) ∈ Rq is the control input
to be designed, E ∈ Rp×p is the state matrix, and F ∈ Rp×q

is the input matrix.
Suppose that each agent i has a time-varying reference sig-

nal φi (t) ∈ Rp and can only communicate with its neighbors.
The objective of DAT is to design a distributed control input
ui (t) for each agent i such that all agents are able to track
the average of multiple time-varying reference signals (it can
be denoted by φ̄(t) =

1
N

∑N
i=1 φi (t)) through local interaction

among agents. Take the UAVs’ formation control in Fig. 1 for
example, the control objective of DAT can be described as
follows

||xi (t)−
1
N

N∑
i=1

φi (t)− bi || → 0, t → ∞, (2)

where xi (t) is the UAV i’s position and bi is the desired
distance from the target φ̄(t). Without loss of generality,
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however, it is often assumed that bi = 0,∀i ∈ {1, . . . , N }.
Therefore, if all agents finally track the target signal φ̄(t), i.e.,

||xi (t)−
1
N

N∑
i=1

φi (t)|| → 0, t → ∞, (3)

we call that the DAT problem is solved.
The DAT has various applications including distributed

formation control (in coverage, surveillance, and patrolling
applications), distributed state estimation (in environmen-
tal monitoring, fire detection, object tracking), distributed
resource allocation (in power grids, optimal routing, and
economic systems), and distributed convex optimization (in
large-scale machine learning and deep learning) [51]. Depend-
ing on the practical application scenarios, the interested
physical variables (e.g., position, attitude, power consumption,
etc.) can be modeled as the time-varying reference signal φi (t).
For the sake of simplicity, we suppose that the time-varying
reference signal of each agent is a scalar, that is, φi (t) ∈ R.
Note that the scalar case (i.e., φi (t) ∈ R) can be extended to
multi-dimensional cases through the operation of Kronecker
product.

To solve the DAT problem (3), the control input in (1) can
be designed as follows

ui (t) = −α
∑
j∈Ni

sgn{xi (t)− x j (t)} + γφi (t)+ φ̇i (t), (4)

with E = −γ Ip, F = Iq , and p = q = 1 in (1). In practice,
however, the derivative φ̇i (t) in (4) might be unavailable for
agent i . Thus, to avoid the direct use of φ̇i (t), an internal state
is introduced and a robust DAT algorithm is proposed in recent
works [6], [7] as follows

żi (t) = −γ zi (t)+ ui (t), (5a)
xi (t) = zi (t)+ φi (t), (5b)

ui (t) = −α
∑
j∈Ni

sgn{xi (t)− x j (t)}, (5c)

where zi (t), φi (t) and ui (t) are the internal state, the
time-varying reference signal and the control input of agent i ,
respectively. The parameters α and γ > 0 denote the control
gain and the design parameter, respectively.

It is worth emphasizing that the DAT algorithm (5) is
equivalent to the system (1) and (4). The state xi (t) denotes
the time-varying estimate of the instantaneous average signal
φ̄(t) in agent i . The objective is to make all the states xi (t), i ∈

{1, . . . , N } finally track the target signal φ̄(t), which implies
that not only all xi (t), i ∈ {1, . . . , N } achieve an agreement
but also the agreement value must be the target signal φ̄(t).
Consequently, each agent has to exchange its local estimate
xi (t) instead of its reference signal φi (t) with its neighbors
via local interaction. Also, the use of the discontinuous sign
function can speed up the convergence process and even
contribute to finite-time convergence.

III. ROBUST DISTRIBUTED AVERAGE TRACKING
WITH EXTERNAL DISTURBANCES

In practice, many disturbances such as environmental
disturbances (geographical, meteorological, electromagnetic,

etc.), aerodynamic disturbances, servo-drive disturbances, and
unmodeled dynamics and parametric variations widely exist
in networked control systems. Not surprisingly, these distur-
bances might bring adverse impacts on the performance and
even the stability of control systems. However, most existing
DAT works preset an ideal condition and do not take into
account the presence of external disturbances, which results in
that the existing DAT algorithm (5) cannot successfully track
the target signal φ̄(t) due to the adverse effects of external
disturbances. Thus, the rejection of external disturbances for
DAT is a key control objective in networked control systems.

A. Algorithm Design

Since the external disturbances cannot be measured directly
or are too expensive to measure, an intuitive idea is to estimate
the disturbances (or the influence of the disturbances) using
measurable variables, and then compensate for the influence
of the disturbances based on the disturbance estimates in the
design of the control input. Based on this idea, we propose an
anti-disturbance DAT (AD-DAT) algorithm as follows

żi (t) = −γ zi (t)+ ūi (t), (6a)
ūi (t) = ui (t)+ di (t), (6b)
xi (t) = zi (t)+ φi (t), (6c)

ui (t) = −α
∑
j∈Ni

sgn{xi (t)− x j (t)} − d̂i (t), (6d)

where di (t) is the external disturbance applied to the control
input ui (t) and the term ūi (t) can be seen as the disturbed
control input. To compensate the impact of the external
disturbance di (t), an estimate term d̂i (t) is introduced in the
design of the control input ui (t).

Assumption 1: Suppose that the external disturbance is har-
monic and is generated by the following linear exogenous
systems

ξ̇i (t) = Aiξi (t),

di (t) = Ciξi (t), (7)

where ξi (t) ∈ Rs is the internal state, and Ai and Ci are
known constant matrices with appropriate dimensions and the
pair (Ai , Ci ) is observable.

Remark 1: Note that the harmonic disturbance is a class of
disturbances that exist widely in engineering. For a specific
environment, the parameter matrices Ai and Ci that are
corresponding to frequency and observability features, can
often be obtained by practical experience.

Next, the key point is to design an estimator for d̂i (t) to
estimate the disturbance di (t). Based on the idea of DOBC
in [30], we propose a stand-alone disturbance observer as
follows

ẇi (t) = (Ai − Ki Ci ) [Ki zi (t)+ wi (t)]

− Ki
[
−γ zi (t)+ ui (t)

]
, (8a)

ξ̂i (t) = Ki zi (t)+ wi (t), (8b)

d̂i (t) = Ci ξ̂i (t), (8c)
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where Ki ∈ Rs is the gain matrix, wi (t) ∈ Rs is the internal
state of the observer, ξ̂i (t) and d̂i (t) are the estimates of ξi (t)
and di (t), respectively.

Remark 2: For the class of harmonic disturbances with
known dynamics (7), the DOBC method can estimate the
disturbance directly by designing the disturbance observer (8),
and then compensate for the disturbance in the design of
the control input (6d). Besides, the DOBC method not only
performs good estimation of the disturbance but also keeps
the design of system models separate from that of disturbance
observers, which can contribute to the implementation of
algorithms in practice.

B. Main Result and Convergence Analysis

Before giving the main result in this section, some necessary
assumptions and lemmas are provided.

Assumption 2: For any two neighboring agents, the local
difference in signals φi (t) and their derivatives φ̇i (t) are both
bounded, i.e., there exist positive constants ϕ and ϱ such that

sup
t∈[t0,∞)

∀i, j :(vi ,v j )∈E

||φi (t)− φ j (t)||∞ ≤ ϕ < ∞,

sup
t∈[t0,∞)

∀i, j :(vi ,v j )∈E

||φ̇i (t)− φ̇ j (t)||∞ ≤ ϱ < ∞. (9)

Remark 3: Note that the constraints in (9) can be written
as supt∈[t0,∞) ||B

Tφ(t)||∞ ≤ ϕ and supt∈[t0,∞) ||B
T φ̇(t)||∞ ≤

ϱ in a vector form, where φ(t) = [φ1(t), . . . , φN (t)]T ,
φ̇(t) = [φ̇1(t), . . . , φ̇N (t)]T , and B is the incidence matrix.
In practical physical systems, due to mechanical and electrical
limitations, the reference signal and its derivative cannot
become infinitely large, which implies that they are always
bounded. It is worth pointing out that the Assumption 2 is
less strict than assuming that both φi (t) and φ̇i (t) should be
continuous and bounded. Some similar assumptions are made
in the literature [5], [6], and [20].

Lemma 1: For a connected undirected network with N
nodes, the Laplacian matrix L and the incidence matrix B
satisfy

M = L L†
= B BT (B BT )† = B(BT B)† BT (10)

where M = IN −
1
N 1N 1T

N and (·)† denotes the generalized
inverse. Also, we can have that L = B BT

= BT B and
||(BT B)†||∞ ≤ ||L†

||2 ≤ 1/λ2.
Proof: See the Lemma 3 in [52].

Remark 4: Note that we here consider the oriented inci-
dence matrix for a given undirected graph. The oriented
incidence matrix of an undirected graph is the incidence
matrix, in the sense of the corresponding directed graph, where
each edge is set as an any orientation compared with the
undirected graph. That is, in the column of one edge of the
incidence matrix, there is one 1 in the row corresponding
to one vertex and one −1 in the row corresponding to the
other vertex, and all other rows are 0. More details can be
found in [53] and an example is provided in the section of
Simulation.

Theorem 1: Consider a connected undirected network with
external disturbance (7). The proposed AD-DAT algorithm (6)
with disturbance observer (8) under Assumption 1-2 guar-
antees that the DAT problem (3) can be solved with zero
steady-state error for given design parameter γ > 0 when
the control gain α and a group of gain matrices {K1, . . . , KN }

are chosen such that

α ≥
1
λ2
(ϱ + γ ϕ), 9 =

[
3 21
2T

1 �1

]
< 0, (11)

where 3 = −γ IN ,21 =
1
24C , �1 =

1
2

(
4A−K C +4T

A−K C
)

with 4C = diag(C1, . . . ,CN ), 4A−K C = diag(A1 −

K1C1, . . . , AN − KN CN ).
Proof: In a compact form, the AD-DAT algorithm (6) can

be rewritten as

ż(t) = −γ z(t)+ u(t)+ d(t), (12a)
x(t) = z(t)+ φ(t), (12b)

u(t) = −αB · sgn{BT x(t)} − d̂(t), (12c)

where z(t) = (z1(t), . . . , zN (t))T , u(t) =

(u1(t), . . . , uN (t))T , x(t) = (x1(t), . . . , xN (t))T ,
d(t) = (d1(t), . . . , dN (t))T , d̂(t) = (d̂1(t), . . . , d̂N (t))T .

Define estimation error ei (t) = ξi (t)− ξ̂i (t). It follows that

ėi (t) = Aiξi (t)− Ki żi (t)− ẇi (t)

= Aiξi (t)− Ki
[
−γ zi (t)+ ui (t)+ di (t)

]
−

[
(Ai −Ki Ci )(Ki zi (t)+wi (t))−Ki (−γ zi (t)+ui (t))

]
= (Ai − Ki Ci )(ξi (t)− ξ̂i (t))

= (Ai − Ki Ci )ei (t),

which can be written in a compact form

ė(t) = 4A−K C e(t), (13)

where e(t) = (eT
1 (t), . . . , eT

N (t))
T , 4A−K C = diag(A1 −

K1C1, . . . , AN − KN CN ).
Define steady-state error εi (t) = xi (t)− φ̄(t), and we have

ε(t) = x(t)− 1N φ̄(t) = z(t)+ Mφ(t), (14)

where ε(t) = (ε1(t), . . . , εN (t))T , M = IN −
1
N 1N 1T

N . Then
it follows that

ε̇(t) = −γ z(t)+ u(t)+ d(t)+ Mφ̇(t)

= −γ [z(t)+ Mφ(t)] − αB · sgn{BT ε(t)}

+ M
[
φ̇(t)+ γφ(t)

]
− d̂(t)+ d(t)

= −γ ε(t)− αB · sgn{BT ε(t)}

+ M
[
φ̇(t)+ γφ(t)

]
+4C e(t), (15)

where 4C = diag(C1, . . . ,CN ).
Consider the following Lyapunov function candidate

V (t) = V1(t)+ V2(t)

≜
1
2
εT (t)ε(t)+

1
2

eT (t)e(t). (16)

According to Lemma 1 and Assumption 2, we have

εT (t)M
[
φ̇(t)+ γφ(t)

]
= εT (t)B(BT B)† BT [

φ̇(t)+ γφ(t)
]
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≤ ||εT (t)B||1||(BT B)†||∞
[
||BT φ̇(t)||∞ + γ ||BTφ(t)||∞

]
≤

1
λ2
(ϱ + γ ϕ)||εT (t)B||1 (17)

and

−αεT (t)B · sgn{BT ε(t)} = −α||εT (t)B||1. (18)

Then combining (15)-(18) yields

V̇1(t) ≤ −γ εT (t)ε(t)− α||εT (t)B||1

+
1
λ2
(ϱ + γ ϕ)||εT (t)B||1 + εT (t)4C e(t)

= −γ εT (t)ε(t)+

[
1
λ2
(ϱ + γ ϕ)− α

]
||εT (t)B||1

+ εT (t)4C e(t). (19)

If α is selected such that

α ≥
1
λ2
(ϱ + γ ϕ), (20)

then we have

V̇1(t) ≤ −γ εT (t)ε(t)+ εT (t)4C e(t). (21)

Finally, it follows that

V̇ (t) = V̇1(t)+ V̇2(t)

≤ −γ εT (t)ε(t)+ εT (t)4C e(t)+ eT (t)ė(t)

≤ −γ εT (t)ε(t)+ εT (t)4C e(t)

+ eT (t)4A−K C e(t)

= yT (t)9y(t) ≤ −2λmin(−9)V (t), (22)

where

y(t) =

[
ε(t)
e(t)

]
, 9 =

[
3 21
2T

1 �1

]
(23)

with 3 = −γ IN , 21 =
1
24C , �1 =

1
2

(
4A−K C +4T

A−K C
)
.

According to the condition (11), we have V̇ (t) ≤

−2λmin(−9)V (t) < 0, which implies that the steady-state
error is able to converge to zero asymptotically. The proof is
completed.

Remark 5: For the choice of the group of gain matrices
{K1, . . . , KN }, we can let Ki = K ,∀i ∈ {1, . . . , N } and then
use linear matrix inequality methods [54] to get a feasible
solution of the gain matrix K . Alternatively, the linear matrix
inequality (LMI) toolbox in MATLAB can be called directly
to solve the linear matrix inequality in (11). Note that the
parameter matrices Ai ,Ci of all agents are required in the
computation of the feasible solution. To collect the parameter
matrices Ai ,Ci of each agent i, i ∈ {1, . . . , N }, some gossip
algorithms can be executed during initialization. Since the
collection of parameter matrices Ai ,Ci , i ∈ {1, . . . , N } is only
a one-time operation, the additional computation cost is trivial
and negligible.

IV. ROBUST DISTRIBUTED AVERAGE TRACKING
WITH FALSE DATA INJECTION ATTACKS

In addition to the disturbances and uncertainties caused by
the natural environment and internal controls, in a hostile
scenario, malicious adversaries might launch false data injec-
tion attacks (FDIAs) on the control system. Different from
external disturbance and uncertainties, the FDIAs aim to inject
some false signals to corrupt the original signals so that the
actuator unit makes an incorrect response. Thus, the rejection
of FDIAs launched by malicious adversaries for DAT is also
a key control objective in networked control systems.

A. Algorithm Design

It is worth noting that, from a technical point of view,
the FDIAs can be seen as external disturbances and what
we need to do is to estimate the FDIAs (or the influence
of the FDIAs) and then compensate for them in the design
of the control inputs. Thus, we propose an anti-attack DAT
(AA-DAT) algorithm as follows

żi (t) = −γ zi (t)+ ũi (t), (24a)
ũi (t) = ui (t)+ δi (t), (24b)
xi (t) = zi (t)+ φi (t), (24c)

ui (t) = −α
∑
j∈Ni

sgn{xi (t)− x j (t)} − δ̂i (t), (24d)

where δi (t) denotes the injected false data applied to the con-
trol input ui (t) and the term ũi (t) can be seen as the disturbed
control input. To compensate the impact of the injected false
data δi (t), an estimate term δ̂i (t) is introduced in the design
of the control input ui (t).

Assumption 3: The injected false data δi (t) and its time
derivative δ̇i (t) = hi (t) satisfy: 1) δi (t) and hi (t) are both
bounded; 2) hi (t) ∈ L2.

Remark 6: Note that some intrinsic features of the FDIAs
need to be considered compared with traditional external
disturbances. Specifically, many external disturbances can be
modeled as known dynamics according to specific operation
environments. In contrast, the FDIAs are usually launched
by malicious adversaries, which implies that we have less
knowledge about the injected attack signals. In other words,
we cannot obtain the dynamics of the FDIAs, and we even
do not know that the FDIAs are launched or not. Therefore,
we here assume that the dynamic models of the FDIAs are
unknown. Moreover, hi (t) ∈ L2 implies that ||hi (t)||2 =(∫

∞

0 h2
i (τ )dτ

)1/2 exists and is finite. In other words, we here
consider a type of FDIAs where the injected attack signal
tends to be a constant as time goes on or the FDIAs will be
ended in finite time. Some similar assumptions are made in
the literature [46], [47].

Now we are in a position to design the observers of x̂i (t)
and δ̂i (t) as follows

˙̂zi (t) = −γ ẑi (t)+ ui (t)+ δ̂i (t)− β1
[
x̂i (t)− xi (t)

]
, (25a)

x̂i (t) = ẑi (t)+ φi (t), (25b)
˙̂
δi (t) = −β2

[
x̂i (t)− xi (t)

]
, (25c)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Hangzhou Normal University. Downloaded on March 27,2024 at 09:16:35 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: ROBUST DAT WITH DISTURBANCE OBSERVER CONTROL 7

where β1, β2 > 0 are positive scalar control gains, and
x̂i (t) and ẑi (t) are the estimates of xi (t) and zi (t) in (24),
respectively.

Remark 7: Compared to the harmonic disturbances with
known dynamics in (7), for the class of FDIAs with unknown
dynamics, it is difficult to design an observer to estimate
the FDIAs directly, which implies that the DOBC method
used in (8) cannot be adopted in the case of FDIAs directly.
Since the FDIAs definitely influence the system output, the
attack must be observable from the output. Based on this idea,
a special observer named the extended state observer (25) is
developed to estimate the attack via the impact of the attack
on the system output indirectly. This idea is called active
disturbance rejection control (ADRC), which can be found
in [46], [47], and [48].

Remark 8: Actually, the proposed AA-DAT algorithm can
be applied to deal with both unmodeled disturbances and
attacks, as long as the disturbances or attacks tend to be
constant values over time. For the deceptive attack launched
by malicious attackers, there are two reasons why the attack
signals are assumed to be vanishing towards constants over
time. First, from the point of view of attackers, they always
try to make the consensus point of the DAT deviate from
the expected target point and stay undetected so that the
control system makes wrong control decisions. For example,
the air escort formation should be deployed with point “A”
as the center. To invalidate the air escort, the attackers can
mislead the formation to be centered on a wrong point “B”
instead of the correct point “A” by launching a deceptive
attack. Second, the injected attack signal has a great impact
on the convergence of the whole system. Once the dynam-
ics of the attack signal is too complex, the convergence
of the DAT might be destroyed, which implies that the
behavior of the deceptive attack might be detected and some
anti-attack strategies will be implemented. Thus, the FDIAs
focus more on stealthily changing decision results rather than
disrupting the entire decision-making process. In conclusion,
regardless of disturbances or attacks, as long as they tend
to be constant values, the proposed AA-DAT algorithm is
applicable.

B. Main Result and Convergence Analysis

Before giving the main result in this section, some necessary
lemmas are provided.

Lemma 2: If f (t), ḟ (t) ∈ L∞ and f (t) ∈ Lp with 1 ≤

p < ∞, then limt→∞ f (t) = 0.
Proof: See the Lemma 3.2.5 in [55].

Theorem 2: Consider a connected undirected network with
FDIAs. The proposed AA-DAT algorithm (24) with state
observer (25) under Assumption 2 and 3 guarantees that the
DAT problem (3) can be solved with zero steady-state error
for given design parameter γ > 0 if the control gains α, β1,
β2, and a symmetric matrix P > 0 are chosen such that

α ≥
1
λ2
(ϱ + γ ϕ), 91 =

 3 22 ON
2T

2 �3 0

ON 0T
−IN

 < 0 (26)

with 3 = −γ IN , 22 = −
1
2 C̄ , �3 =

1
2 (P Ā + ĀT P),

0 =

√
2

2 P Q, where

Ā =

[
−(γ + β1)IN IN

−β2 IN ON

]
,

C̄ =
[

ON IN
]
, Q =

[
ON −IN

]T
. (27)

Proof: In a compact form, the proposed AA-DAT
algorithm (24) can be rewritten as

ż(t) = −γ z(t)+ u(t)+ δ(t), (28a)
x(t) = z(t)+ φ(t), (28b)

u(t) = −αB · sgn{BT x(t)} − δ̂(t), (28c)

where δ(t) = (δ1(t), . . . , δN (t))T , δ̂(t) = (δ̂1(t), . . . , δ̂N (t))T .
Define estimation errors exi (t) = x̂i (t)− xi (t) and eδi (t) =

δ̂i (t)− δi (t), then we have

ex (t) = (ex1(t), . . . , exN (t))
T

= x̂(t)− x(t),

eδ(t) = (eδ1(t), . . . , eδN (t))
T

= δ̂(t)− δ(t),

where x̂(t) = (x̂1(t), . . . , x̂N (t))T . Define steady-state error
εi (t) = xi (t)− φ̄(t), and we have

ε(t) = x(t)− 1N φ̄(t) = z(t)+ Mφ(t). (29)

Then it follows that

ε̇(t) = −γ z(t)+ u(t)+ δ(t)+ Mφ̇(t)

= −γ [z(t)+ Mφ(t)] + u(t)

+ M
[
φ̇(t)+ γφ(t)

]
+ δ(t)

= −γ ε(t)+ u(t)+ M
[
φ̇(t)+ γφ(t)

]
+ δ(t). (30)

Consider the following Lyapunov function candidate

V (t) = V1(t)+ V2(t)

≜
1
2
εT (t)ε(t)+

1
2

eT (t)Pe(t), (31)

where e(t) = [eT
x (t), eT

δ (t)]
T , and P > 0 is a symmetric

positive definite matrix. Using the similar derivation in (17),
we have

εT (t)M
[
φ̇(t)+ γφ(t)

]
≤

1
λ2
(ϱ + γ ϕ)||εT (t)B||1 (32)

and

εT (t)u(t) = −αεT (t)B · sgn{BT x(t)} − εT (t)δ̂(t)

= −αεT (t)B · sgn{BT
[ε(t)+ 1N φ̄(t)]} − εT (t)δ̂(t)

= −α||εT (t)B||1 − εT (t)δ̂(t). (33)

Then combining (30)-(33) yields

V̇1(t) = εT (t)
[
−γ ε(t)− αB · sgn{BT x(t)}

+M
[
φ̇(t)+ γφ(t)

]
− eδ(t)

]
≤ −γ εT (t)ε(t)−

[
α −

1
λ2
(ϱ + γ ϕ)

]
||εT (t)B||1

− εT (t)C̄e(t)

≤ −γ εT (t)ε(t)− εT (t)C̄e(t), (34)
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where C̄ is as in (27), if the control gain α is selected such
that

α ≥
1
λ2
(ϱ + γ ϕ). (35)

Since

ėx (t) = ˙̂x(t)− ẋ(t) = −(γ + β1)ex (t)+ eδ(t),

ėδ(t) =
˙̂
δ(t)− δ̇(t) = −β2ex (t)− h(t),

where h(t) = (h1(t), . . . , hN (t))T , we have

ė(t) = Āe(t)+ Qh(t), (36)

where

Ā =

[
−(γ + β1)IN IN

−β2 IN ON

]
, Q =

[
ON
−IN

]
. (37)

It follows that

V̇2(t) = eT (t)Pė(t)

= eT (t)P
[
Āe(t)+ Qh(t)

]
≤ eT (t)P Āe(t)+

1
2

eT (t)P Q QT Pe(t)+
1
2

hT (t)h(t),

where the basic inequality aT b ≤ (aT a + bT b)/2 is used.
Thus, we have

V̇ (t) = V̇1(t)+ V̇2(t)

≤ −γ εT (t)ε(t)− εT (t)C̄e(t)

+ eT (t)P Āe(t)+
1
2

eT (t)P Q QT Pe(t)+
1
2

hT (t)h(t)

= yT (t)9y(t)+
1
2

hT (t)h(t), (38)

where

y(t) =

[
ε(t)
e(t)

]
, 9 =

[
3 22
2T

2 �2

]
(39)

with 3 = −γ IN , 22 = −
1
2 C̄ , �2 =

1
2 (P Ā + ĀT P +

P Q QT P).
From (31) and (39), we have

σ̄

2
yT (t)y(t) ≤ V (t) ≤

σ̂

2
yT (t)y(t), (40)

where σ̄ = min{1, λmin(P)}, σ̂ = max{1, λmax(P)}. Thus,
from (38), we have

V̇ (t) ≤ −λmin(−9)yT (t)y(t)+
1
2

hT (t)h(t)

≤
−2λmin(−9)

σ̄
V (t)+

1
2

hT (t)h(t). (41)

Let 9 < 0, which is equivalent to

91 =

 3 22 ON
2T

2 �3 0

ON 0T
−IN

 < 0 (42)

with �3 =
1
2 (P Ā + ĀT P), 0 =

√
2

2 P Q according to Schur
complement lemma [56].

Integrating both sides of (41) yields

V (t)−V (0)≤
−2λmin(−9)

σ̄

t∫
0

V (τ )dτ +
1
2

t∫
0

hT (τ )h(τ )dτ.

(43)

Combining (40) and (43) yields

λmin(−9)

t∫
0

yT (τ )y(τ )dτ ≤ V (0)+
1
2

t∫
0

hT (τ )h(τ )dτ.

(44)

Letting t → ∞, we have

λmin(−9)

∞∫
0

yT (τ )y(τ )dτ ≤ V (0)+
1
2

∞∫
0

hT (τ )h(τ )dτ.

(45)

Since Assumption 3 holds, it follows that
∫

∞

0 hT (τ )h(τ )dτ <
∞ exists and is finite. Due to the fact that V (0) is bounded
under Assumptions 2 and 3, we have that

∫
∞

0 yT (τ )y(τ )dτ <
∞ exists and is finite, which implies y(t) ∈ L2.

From (43), we can have

V (t) ≤ V (0)+
1
2

∞∫
0

hT (τ )h(τ )dτ, (46)

which implies V (t), V̇ (t) ∈ L∞ under Assumption 3. Then it
follows that y(t), ẏ(t) ∈ L∞ based on (31) and (39). Thus,
according to Lemma 2, we have limt→∞ y(t) = 0. Then it
follows that the error systems ε(t) and e(t) are asymptotically
stable, i.e.,

lim
t→∞

ε(t) = 0, lim
t→∞

ex (t) = 0, lim
t→∞

eδ(t) = 0,

which implies that

lim
t→∞

x(t) = 1N φ̄(t). (47)

The proof is completed.
Remark 9: Note that the classical solution exists even

though a discontinuous sign function is employed in (6)
and (24) (see Example 6 in [57]). Furthermore, the consid-
ered Lyapunov functions (16) and (31) are both continuous
and differentiable. Thus, the nonsmooth analysis methods for
stability analysis are not required in this paper.

Remark 10: In control system design, a large proportion of
control algorithms are designed in continuous time. In prac-
tice, to implement the continuous-time control algorithm,
a discrete-time algorithm can be easily obtained by Euler
discretization with a small step size h. When h → 0,
the stability and convergence properties of the discrete-time
algorithm are expected to be similar to those of the continuous-
time algorithm. For the analysis of the upper bound of the step
size h, it is worth the effort to establish new theoretical results,
which is beyond the scope of our current work.

Remark 11: Note that the discontinuous sign function in (6)
and (24) might lead to chattering effect in practical imple-
mentation. To solve this issue, a continuous sigmoid function
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can be employed to approximate the discontinuous sign func-
tion. Furthermore, the control gain α in Theorem 1 and 2
needs to depend on parameters ϱ, ϕ and λ2. For ϱ and ϕ,
a maximum consensus algorithm can be employed to achieve
the maximum operation. For λ2, a conservative lower bound
λ2 ≥ 4/(N (N − 1)) (see Theorem 4.2 in [58]) can be used
and other tighter bounds or distributed estimation methods for
λ2 can also be found in literature. In addition, the convergence
rate is determined by the design parameter γ according to
(22)-(23) and (41)-(42). Actually, a bigger γ tends to produce
a bigger convergence rate, which is associated with a larger
control gain α according to the parameter constraints in
Theorem 1 and 2.

Remark 12: As we can see from (6)-(8) and (24)-(25),
to achieve the accurate target tracking in the presence of
external disturbances or attacks, both the control input and
the disturbance observer are proposed for the AD-DAT and
AA-DAT algorithms, respectively. In general, there might exist
various disturbances, attacks and uncertainties in practical
systems and the system dynamics might also be of high-order
or in a general linear or nonlinear form. However, how to
design appropriate control inputs and disturbance observers
under such scenarios is still open and is worthy of further
study.

V. SIMULATION

A. Robust Distributed Average Tracking With External
Disturbances

In this subsection, we first consider a scenario where there
exist external disturbances in the execution of DAT algorithms.
Suppose that the network topology is composed of 6 agents
and is shown as in Fig. 2. For the initial topology in Fig. 2(a),
the Laplacian matrix and the oriented incidence matrix are
given as follows

L =


2 −1 −1 0 0 0

−1 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 4 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

 ,

B =


1 1 0 0 0 0 0

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 −1 1 1 0
0 0 0 0 −1 0 1
0 0 0 0 0 −1 −1

 ,

from which we can see that L = B BT in Lemma 1 holds.
For agent i , the time-varying reference signal φi (t) is set as

φi (t) =

{
ai sin(ωi t + ψi ), ∀i ∈ {1, 2, 3},

ai cos(ωi t + ψi ), ∀i ∈ {4, 5, 6},
(48)

where ai =
i−1

2 − 4, ωi =
i+1

4 , and ψi =
π i
3 − π . For

the initial values of internal states zi (t), i ∈ {1, . . . , 6}, they
are generated in the range of [0, 1] randomly. The design
parameter γ and control gain α are chosen as 0.75 and 8.5,
respectively, according to Theorem 1.

Fig. 2. The network topology composed of 6 agents. (a) The initial topology.
(b) A different topology for the same problem where agent 6 has become
disconnected.

Fig. 3. The target signal φ̄(t) fails to be tracked by executing the traditional
DAT algorithm in [6] and [7] with external disturbances.

For the external disturbance in (7), we assume that the
internal state ξi (t) is two-dimensional and the parameters

Ai ,Ci are set as Ai =

[
0 2

−2 0

]
and Ci = [5, 0] for all agents.

Then we solve the ordinary differential equation (7) by using
MATLAB’s library functions to obtain

di (t) = 2.5 cos(1) sin(2t)+ 2.5 sin(1) cos(2t) (49)

for given initial internal state ξi (0) = [0.5sin(1), 0.5cos(1)]T .
The gain matrix of the disturbance observer is set as Ki =

[18.5, 18.5]
T for i ∈ {1, . . . , 6} by applying LMI Solvers

of MATLAB according to the parameter constraint (11) in
Theorem 1.

For the first scenario, we consider that the network topology
remains unchanged and the topology is shown in Fig. 2(a).
When a traditional DAT algorithm is executed with external
disturbances, the state evolution in Fig. 3 shows that the
target signal φ̄(t) denoted by a dashed black line fails to be
tracked. In contrast, when the proposed AD-DAT algorithm (6)
with disturbance observer (8) is executed, the state evolution
in Fig. 4 shows that the target signal φ̄(t) can be tracked
successfully while all state estimates achieve an agreement
asymptotically. The state evolution of the disturbance observer
and the external disturbance are shown in Fig. 5, which implies
that the external disturbance (7) can be tracked by using the
proposed disturbance observer (8).

For another scenario, we consider that some agents leave the
network and then rejoin. For example, let the agent 6 leave
the network at time t = 6s and then return at time t = 15s.
In this case, the state evolution of all agents are shown in
Fig. 6, which shows that the proposed AD-DAT algorithm is
robust to the change of network topologies. In other words, all
agents in a network are able to converge to the target signal
φ̄(t) adaptively without any reinitialization despite that some
agents leave or join the network.

B. Robust Distributed Average Tracking With FDIAs

In this subsection, we consider another scenario where there
exist FDIAs in the execution of DAT algorithms. According
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Fig. 4. The target signal φ̄(t) can be tracked by executing the proposed
AD-DAT algorithm.

Fig. 5. The states of the external disturbance and the disturbance observer.

Fig. 6. The proposed AD-DAT algorithm is robust to the change of network
topologies.

to Assumption 3, the unknown FDIAs can be set as

δi (t) = ai (1 − cos(bi t)e−ci t ), i ∈ {1, . . . , 6}, (50)

where ai = i − 1.5, bi = (i + 2)/2, ci = 0.5(i + 1) for
agent i . The parameters α, γ remain the same as before. The
control gains of the extended state observer can be set as
β1 = 1.5, β2 = 2.5 by solving the linear matrix inequality (26)
in Theorem 2 with LMI Solvers of MATLAB.

When a traditional DAT algorithm is executed with FDIAs,
the state evolution in Fig. 7 shows that the target signal φ̄(t)
fails to be tracked due to the existence of FDIAs. In contrast,
when the proposed AA-DAT algorithm (24) with the extended
state observer (25) is executed, the state evolution in Fig. 8
shows that the target signal φ̄(t) can be tracked while all state
estimates achieve an agreement asymptotically. Furthermore,
the estimation errors exi (t) = x̂i (t)−xi (t) and eδi (t) = δ̂i (t)−
δi (t) are shown in Fig. 9, from which we can see that the
estimation errors asymptotically converge to zero.

Note that the stability and convergence properties of the
DAT module under external disturbances and attacks might be
compromised because stability and zero error steady-state con-
vergence of the DAT depends on the asymptotic compensation
of the disturbances or attacks. As we can see, the convergence
speed in Fig. 4 is much faster than that in Fig. 8. The main
reason is that the convergence speeds of the two observers
are different. In simulation part A, since the dynamics of the
considered disturbance is known, the proposed observer (8)
is able to estimate the disturbance directly, which implies that
the convergence speed is faster. In simulation part B, since the
dynamics of the considered attack is unknown, it is difficult to
design an observer to estimate the attack itself directly. Instead,

Fig. 7. The target signal φ̄(t) fails to be tracked by executing the traditional
DAT algorithm in [6] and [7] with FDIAs.

Fig. 8. The target signal φ̄(t) can be tracked by executing the proposed
AA-DAT algorithm.

Fig. 9. The estimation errors of the proposed extended state observer (25).

we have to propose an extended state observer (25) to estimate
the impact of the attack on the system output indirectly. As a
result, the convergence speed of the indirect estimation method
is much slower than that of the direct estimation method used
in the observer (8). In conclusion, the practical convergence
properties of the DAT module under external disturbances and
attacks are closely related to the estimation and compensation
schemes of the disturbances or attacks.

C. Application to Distributed Formation Control

In this subsection, we will show how the DAT is
applied to the formation control in a combined surveillance-
reconnaissance mission shown in Fig. 1 in Section I.

Consider that there are four UGVs moving in formation
and four UAVs flying above to provide aerial coverage and
early warning. The objective of the UAVs is to track the
time-varying geometric center of the UGVs while spread-
ing out in a pre-specified formation. In this scenario, each
UAV can monitor the position of a UGV and share relevant
information with its neighbors via wireless communication,
as shown in Fig. 10 (a). Since each UAV can only monitor
one UGV, it needs to cooperate with its neighbors to compute
the geometric center of the group of UGVs, which implies
that a distributed control algorithm is required instead of a
centralized one in the above scenario.

Each UAV i can access to its own position pi (t) ≜
[pxi (t), pyi (t)]T

∈ R2 and monitor the UGV i’s position
φi (t) ≜ [φxi (t), φyi (t)]T

∈ R2. The positions pi (t) and φi (t)
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Fig. 10. (a) DAT based formation control. The triangles are the UAVs,
the circles are the UGVs, and the cross is the center of the UGVs. (b) The
relative positions between the UAVs and the time-varying geometric center
of the UGVs.

are both expressed in the inertial coordinate frame. Note that
we here only focus on the planar coordinates of the UAVs
since the heights of all the UAVs are assumed to be the
same. To spread out and maintain a pre-specified formation
(assuming it is invariant), each UAV i must be driven to a
relative position vector bi ≜ [bxi , byi ]

T
∈ R2 (as shown in

Fig. 10 (b)) with respect to the time-varying geometric center
of the UGVs, i.e., pi (t) →

1
N

∑N
i=1 φi (t) + bi as t → ∞.

In this scenario, we assume that the time-varying position
trajectories of the UGVs are given by

φ1(t) =

[
sin(0.2t)+ 0.75t + 2.0
− sin(0.1t)+ 0.4t + 1.0

]
,

φ2(t) =

[
− sin(0.3t)+ 0.75t − 1.0
sin(0.2t)+ 0.4t + 2.0

]
,

φ3(t) =

[
− sin(0.1t)+ 0.75t − 2.0
sin(0.2t)+ 0.4t − 1.0

]
,

φ4(t) =

[
sin(0.2t)+ 0.75t + 1.0
− sin(0.3t)+ 0.4t − 2.0

]
.

The initial positions of the UAVs are set as p1(0) =

[4.2, 3.8]
T , p2(0) = [−2.0, 1.8]

T , p3(0) = [−2.0, −1.0]
T ,

p4(0) = [4.2, −1.5]
T . Also, we assume that the pre-specified

formation is a rectangle with the relative position vectors
b1 = [4.0, 4.0]

T , b2 = [−4.0, 4.0]
T , b3 = [−4.0, −4.0]

T ,
b4 = [4.0, −4.0]

T .
We first consider the case of external disturbances.

To achieve the formation control of the UAVs, we propose
the following anti-disturbance DAT (AD-DAT) algorithm

żi (t) = −γ zi (t)+ ūi (t), (51a)
ūi (t) = ui (t)+ di (t), (51b)
pi (t) = zi (t)+ φi (t)+ bi , (51c)

ui (t) = −α
∑
j∈Ni

sgn{pi (t)− bi − (p j (t)− b j )} − d̂i (t),

(51d)

where pi (t), zi (t), φi (t) and bi are all two-dimensional vectors
now, and are respectively the position state of UAV i , the
internal state of UAV i , the position state of UGV i and the
relative position vector of UAV i . di (t) ∈ R2 is the external
disturbance applied to the control input ui (t) and d̂i (t) is the

Fig. 11. The motion trajectories of the UGVs and the UAVs in the presence
of external disturbances. The circles are the UGVs, the triangles are the UAVs,
the crosses are the centers, and the rectangles are the pre-specified formation
shapes of the UAVs.

Fig. 12. The tracking errors of the UAVs in the presence of external
disturbances.

estimate of di (t). Note that the algorithm (51) is equivalent
to the AD-DAT algorithm (6) in Section III when we denote
xi (t) = pi (t)− bi .

Assume that the external disturbance di (t) is set as in (49)
and is extended to a two-dimensional vector. For the initial
values of internal states zi (t), i ∈ {1, . . . , 4}, they are gener-
ated in the range of [0, 1] randomly. The design parameter
γ , control gain α and the gain matrix Ki are the same
as in Section V-A. By implementing the proposed AD-DAT
algorithm (51) and the disturbance observer (8), the motion
trajectories of the UGVs and the UAVs are shown in Fig. 11.
We can see that the UAVs are able to track the time-varying
geometric center of the UGVs and adjust their own positions
to spread out and maintain a pre-specified formation shape.
The tracking error ei (t) = pi (t) − bi −

1
N

∑N
i=1 φi (t) is

shown in Fig. 12, from which we can see that the errors
ei (t),∀i ∈ {1, . . . , 4} asymptotically converge to zero with
small perturbations, which are due to the chatting effect of
the discontinuous sign function.

Next, we consider the case of false data injection
attacks (FDIAs). To achieve the formation control of the
UAVs, we propose the following anti-attack DAT (AA-DAT)
algorithm

żi (t) = −γ zi (t)+ ũi (t), (52a)
ũi (t) = ui (t)+ δi (t), (52b)
pi (t) = zi (t)+ φi (t)+ bi , (52c)

ui (t) = −α
∑
j∈Ni

sgn{pi (t)− bi − (p j (t)− b j )} − δ̂i (t),

(52d)
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Fig. 13. The motion trajectories of the UGVs and the UAVs in the presence
of FDIAs. The circles are the UGVs, the triangles are the UAVs, the crosses
are the centers, and the rectangles are the pre-specified formation shapes of
the UAVs.

Fig. 14. The tracking errors of the UAVs in the presence of FDIAs.

where δi (t) ∈ R2 is the injected false data applied to the
control input ui (t) and δ̂i (t) is the estimate of δi (t). Note that
the algorithm (52) is equivalent to the AA-DAT algorithm (24)
in Section IV when we denote xi (t) = pi (t)− bi .

Assume that the injected false data δi (t) is set as in (50)
and is extended to a two-dimensional vector. The parameters
α, γ, β1, β2 are the same as in Section V-B. By implementing
the proposed AA-DAT algorithm (52) and the extended state
observer (25), the motion trajectories of the UGVs and the
UAVs are shown in Fig. 13 and the tracking error is shown
in Fig. 14. We can see that the objective of the distributed
formation control of UAVs is successfully achieved in the
presence of FDIAs by using the proposed AA-DAT algorithm.

VI. CONCLUSION

In this paper, we mainly focused on the study of DAT
algorithms for networked control systems in the presence of
external disturbances and FDIAs. For the external disturbances
with known dynamics and the FDIAs with unknown dynamics,
we proposed two extended DAT algorithms with a stand-alone
disturbance observer and an extended state observer based on
the ideas of DOBC and ADRC, respectively. The proposed
two algorithms are able to eliminate the impacts of external
disturbances and FDIAs while achieving the accurate tracking
objective with zero steady-state error asymptotically. In the
future, we will extend the results to more general scenarios in
the presence of external disturbances and FDIAs.
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