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EVENT-TRIGGERED CONTROL FOR MULTI-AGENT SYSTEMS WITH
GENERAL DIRECTED TOPOLOGY AND TIME DELAYS

Lan Gao, Xiaofeng Liao, Huaqing Li, and Guo Chen

ABSTRACT

Recent years have witnessed a growing interest in event-triggered strategies for coordination and cooperative con-
trol of multi-agent systems. However, the most previous works and developments focus on the interactive network that
has no communication delays. This paper deals with the consensus problem of an agent system with event-triggered
control strategy under communication time delays. We first propose a time delays system model, then present a novel
event triggering function that not only avoids continuous communication but also excludes the Zeno behavior. Further-
more, we provide the consensus analysis using an inequality technique instead of the traditional linear matrix inequality
method, and we demonstrate that the inter-event times for each agent are strictly positive, which implies that the Zeno
behavior can be excluded. Finally, simulation results show the effectiveness of the proposed approach and illustrate the
correctness of the theoretical results.
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I. INTRODUCTION

Consensus andRecent cooperation problems have
a long history in multi-agent systems which consist
of vast interconnected autonomous robots, vehicles or
mobile sensors [1]. In cooperative multi-agent systems,
the study of consensus problems mainly focuses on ana-
lyzing how global consensus behavior emerges as a result
of local information interactions among individuals since
the agents only share information with their neighbors
locally. More recently, consensus behaviors have received
increasing attention from various disciplines of engineer-
ing and science involving consensus algorithms [2–4],
formation control [5,6], rendezvous [7,8], agent flocking
[9] and distributed estimation [10].

An important challenge in multi-agent systems is
to design and implement decentralized algorithms for
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control and communication of agents. Generally, each
agent is equipped with a small and capability-limited
embedded microprocessor, which is responsible for col-
lecting information and actuating controller updates
according to some rules. To reduce controller updates,
two methods have been developed, time-scheduled and
event-triggered. However, the time-scheduled method
has an insurmountable deficiency that the communica-
tion and the task scheduling on control units have to
be synchronized during operation in order to ensure the
strict time specifications in system design [11]. Thus, the
event-triggered method, as an excellent control scheme,
has attracted more and more attention from many
researchers of various fields.

Event-triggered control offers a new point of view
on how information could be sampled and transmitted.
In multi-agent systems, an agent transmits its local state
to its neighbors only when it is necessary, that is, only
when a measurement of the local agent state error reaches
a specified threshold [12,13]. Tabuada [12] creatively pre-
sented a triggering condition based on norms of the state
and the state error e = x(tk) − x(t), that is, the last mea-
sured state minus the current state of the agent, where the
measurement received at the controller is held constant
until a new measurement arrives. When this happens, the
error is set to zero and starts increasing until it triggers a
new measurement update.

Recent years also have witnessed event-triggered
control mechanism improvements and developments.
Event-triggered control of multi-agent systems with
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undirected topology was investigated by Dimarogonas
and Johansson in [14], [15]. The limited communication
for event triggering control was researched in [16], [17],
in which the continuous communication of the triggering
function was avoided. The pinning control considering
event-triggered strategy can be found in [19] and [18]. The
authors in [20] studied the distributed rendezvous prob-
lem with a distributed controller and designed the basic
event-triggered algorithm, and the inequality technology
was introduced for general directed topology in [21], [22].
The signal quantisation problem about event triggering
control also was discussed in [16], [23].

Since the communication delays are inevitable in
real information interactive systems, the time delay case
of the consensus problem has attracted much investiga-
tion, including frequency-domain methods [24], linear
matrix inequality (LMI) methods [25], and inequality
technology [26]. To date, however, the previous works
about event-triggered control of the consensus prob-
lem have all assumed the information communication is
instantaneous. Therefore, in this paper, we will discuss
the decentralised event-triggered control for multi-agent
systems with general directed topology and time delays.
Our main contribution is to present a time-delay sys-
tem model and a novel event triggering function that
not only truly avoids continuous communication but
also excludes the Zeno behavior. Furthermore, we pro-
vide the consensus analysis using an inequality technique
instead of the traditional LMI method, and we demon-
strate that the inter-event times for each agent are strictly
positive, which implies that the Zeno behavior can be
excluded. Eventually, a group of simulation results are
given to show the evolution performance by applying the
proposed control strategy.

The remainder of this paper is organised as follows.
Section II declares some preliminary knowledge about
graph theory and the consensus problem. Section III pro-
vides the specific technical details for consensus analysis
and the demonstration for absence of Zeno behavior.
Section IV gives some numerical simulations to verify the
main results. Finally, the paper is concluded in Section V.

II. PRELIMINARIES AND PROBLEM
STATEMENT

2.1 Graph theory

Let  = { ,  ,A} be a directed graph with N nodes,
in which  = {1, 2,… ,N} is the node set,  ⊆  × 
is the edge set, and A = (aij)N×N is the adjacency matrix
of . A directed edge eji = (vj, vi) means that node j can
reach node i or node i can receive information from node

j. If there is an edge from node j to node i, then node
j is called a neighbor of node i and aij = 1; otherwise,
aij = 0. The neighbor node set of node i is denoted by i,
while we indicate with Ni = |i| the number of neighbors
of node i. The Laplacian matrix L = (lij)N×N associated
with the adjacency matrix A is defined by lij = −aij, i ≠ j

; lii =
∑N

j=1,j≠i aij, which ensures that
∑N

j=1 lij = 0. Note
that an undirected graph can be viewed as a special case
of a directed graph, where the information flow is bidi-
rectional. Generally speaking, the Laplacian matrix of a
directed graph is asymmetric, and the Laplacian matrix
of a undirected graph is symmetric.

2.2 Some support lemmas

Lemma 1. [27]. Assume there exists a spanning tree in
digraph . Then, the Laplacian matrix L associated with
 has eigenvalue 0 with algebraic multiplicity one, and
the real parts of all the other eigenvalues are positive, i.e.,
the eigenvalues satisfy 0 = 𝜆1(L) < (𝜆2(L)) ≤ … ≤
(𝜆N(L)).

Lemma 2. Suppose L is the Laplacian matrix of digraph
 with N nodes. Then L̄−1N−1 ⋅ l̄

T
1 is positive stable (i.e. all

eigenvalues have positive real parts) if the digraph  has
a directed spanning tree, where l̄T

1 and L̄ are defined as

l̄1 =
(
l12,… , l1N

)T
,

L̄ =
⎛⎜⎜⎜⎝

l22 l23 … l2N
l32 l33 … l3N
⋮ ⋮ ⋱ ⋮

lN2 lN3 … lNN

⎞⎟⎟⎟⎠ .
Proof. Let

S =
(

1 𝟎N−1
𝟏N−1 IN−1

)
,

where 𝟎N−1 and 𝟏N−1 denote a 0 vector and 1 vector,
respectively, containing N − 1 elements and where IN−1
is a N − 1 dimension unity matrix. Then, we can get the
similar matrix of L:

L̂ = S−1LS =
(

0 l̄T
1

0 L̃

)
,

where L̃ = L̄ − 𝟏N−1 ⋅ l̄T
1 . Due to the properties of the

similar matrix, we have det(𝜆IN − L) = det(𝜆IN − L̂) =
𝜆 det(𝜆IN−1 − L̃). According to Lemma 1, the matrix
L̃ is positive stable (i.e. all eigenvalues have positive
real parts).
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Lemma 3. [21]. Suppose A ∈ R
N×N is a negative sta-

ble matrix and has eigenvalue real parts (𝜆N) < … <

(𝜆1) < 0, then there exists a constant 𝜌 ≥ 1, 𝛼 > 0 such
that ‖eAt‖ ≤ 𝜌e−𝛼t for all t ≥ 0.

2.3 Consensus protocols

According to the event-triggered strategy investi-
gated in [14,15], the following consensus protocol of the
agent system is defined:

ẋi(t)=
N∑

j=1

aij

(
xj

(
tj
kj

)
− xi

(
ti
ki

))
, t ∈

[
ti
ki
, ti

ki+1

)
.

(1)

where xi ∈ R
n is the state of agent i, xi

(
ti
ki

)
is the

last measurement state of agent i, and xj

(
tj
kj

)
represents

the last measurement states received from neighbors of
agent i.

In this paper, we further consider the consensus
protocol with communication delays. For simplicity, we
assume that all communication delays are constant and
equal to 𝜏, which can be explained as an average delay.
Then, the final consensus protocol is proposed as follows:{

ẋi(t) = ui(t),
xi(𝜃) = 𝜑i(𝜃), 𝜃 ∈ [−𝜏, 0], (2)

where 𝜑i corresponds to the initial states of agent i in
interval [−𝜏, 0], and the controller of agent i is defined in
detail as

ui(t) =
N∑

j=1

aij

(
xj

(
tj
kj
− 𝜏

)
− xi

(
ti
ki
− 𝜏

))
.

III. CONSENSUS ANALYSIS

In this section, some consensus criteria is presented
to guarantee the feasibility of the control model. First,
the measurement error for agent i in delay communica-
tion system is defined by:

ei(t) = xi

(
ti
ki
− 𝜏

)
−xi(t−𝜏), t ∈

[
ti
ki
, ti

ki+1

)
. (3)

This represents the degree that the present time state devi-
ates from the last sample time state in the communication
system with a constant time delay 𝜏. When the measure-
ment error reaches a threshold prescribed in advance,
the event is triggered and the agent begins to update
its controller.

Considering that each agent can only obtain its
neighbors’ measurements, the event is also computed
only depending on local information that is available to
each agent. We propose the following event triggering
function:

pi

(
t, ei(t), xi

(
ti
ki
− 𝜏

)
, xj

(
tj
kj
− 𝜏

))
= ‖ei(t)‖ − 𝛽1

Ni

∑
j∈i

‖xj

(
tj
kj
− 𝜏

)
− xi

(
ti
ki
− 𝜏

)‖
− 𝛽2e−𝛾t,

(4)

where 𝛽1, 𝛽2, 𝛾 > 0 are the performance parameters.
Then, an event occurs when the following condition is
violated:

pi

(
t, ei(t), xi

(
ti
ki
− 𝜏

)
, xj

(
tj
kj
− 𝜏

)) ≤ 0. (5)

Remark 1. Once the event is triggered, the measure-
ment error is reset to zero since at that time instant we
have ei

(
ti
ki

)
= xi

(
ti
ki
− 𝜏

)
− xi

(
ti
ki
− 𝜏

)
= 0, thus

Inequality (5) still is satisfied. Moreover, our event trig-
gering function does not depend on the real-time states
of neighbor agents. In previous works, although the
event-triggered strategy makes agents’ controllers avoid
continuous communication, the cost is that each agent
must collect its neighbors’ real-time states to calculate
a triggering function and then judge whether the event
is triggered or not. In other words, the communica-
tion is still continuous from the point of view of the

agents. Conversely, pi

(
t, ei(t), xi

(
ti
ki
− 𝜏

)
, xj

(
tj
kj
− 𝜏

))
is only dependent on agent neighbors’ measurement
states rather than real-time states, which can save limited
communication bandwidth effectively. The next result
reveals the convergence of the system model (2) using the
triggering function (4).

Definition 1. The multi-agent system (2) is said to achieve
global consensus if for any initial state values such that

lim
t→∞

‖xi(t) − xj(t)‖ = 0, ∀i, j = 1, 2,… ,N.

Let 𝜀i(t) = xi(t) − x1(t), i = 2,… ,N, and 𝜀(t) =
(𝜀T

2 (t),… , 𝜀T
N(t)), e(t) = (eT

2 (t),… , eT
N(t))

T , then the fol-
lowing error system is obtained:

𝜀̇(t) = (−L̄+ 1N−1 ⋅ l̄T
1 )(𝜀(t− 𝜏) + e(t)) − d⊗ e1(t) (6)

where d = (l21 − l11,… , lN1 − l11)T . Note that when we
discuss the consensus problem, ‖𝜀(t)‖ becomes a conve-
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nient study object instead of ‖x(t)‖ because ‖𝜀(t)‖ = 0 is
equal to ‖x(t)‖ = 0 with t → ∞.

Theorem 1. Consider agent system (2) with
event-triggered control strategy (5). Assume the com-
munication topology has a directed spanning tree.
Then the consensus is reached asymptotically for any

𝛽1 ∈
(

0, 𝜁

𝜎(1+𝜁)

)
, 𝛽2 > 0, 0 < 𝛾 < 𝛼 when the time delay

𝜏 < 𝜏0, where 𝜎, 𝜁, 𝜏0 are estimated in the following (7),
(18), (19), and the parameter 𝛼 can be determined by
matrix L̃ according to Lemma 3.

Proof. We first have the following derivation

∑
j∈i

‖xj

(
tj
kj
− 𝜏

)
− xi

(
ti
ki
− 𝜏

)‖
=
∑
j∈i

‖xj(t − 𝜏) − x1(t − 𝜏) − (xi(t − 𝜏)

− x1(t − 𝜏)) + ej(t) − ei(t)‖
≤ ∑

j∈i

(‖𝜀j(t − 𝜏) − 𝜀i(t − 𝜏)‖ + ‖ej(t) − ei(t)‖)
≤ ∑

j∈i

‖𝜀j(t − 𝜏)‖ + Ni‖𝜀i(t − 𝜏)‖ + ∑
j∈i

‖ej(t)‖
+ Ni‖ei(t)‖

≤ (√
Ni + Ni

)
(‖𝜀(t − 𝜏)‖ + ‖e(t)‖).

Note that the above derivation depends on the inequality(
a1 +…+ an

)
∕n ≤

√(
a2

1 +…+ a2
n

)
∕n. Then, from (5)

one has

‖ei(t)‖ ≤ 𝛽1

Ni

(√
Ni + Ni

)
(‖𝜀(t − 𝜏)‖ + ‖e(t)‖) + 𝛽2e−𝛾t

≤ 𝛽1

(
1√
N̄

+ 1

)
(‖𝜀(t − 𝜏)‖ + ‖e(t)‖) + 𝛽2e−𝛾t,

where N̄ = min{N1,… ,NN}. Thus, one can further
obtain

‖e(t)‖ ≤ 𝜅1‖𝜀(t − 𝜏)‖ + 𝜅2e−𝛾t, (7)

where 𝜅1 = 𝜎𝛽1

1−𝜎𝛽1
, 𝜅2 = 𝛽2

√
N

1−𝜎𝛽1
, 𝜎 =

√
N
(

1√
N̄
+ 1

)
.

By the Leibnitz formula, we have 𝜀(t − 𝜏) = 𝜀(t) −
∫ t

t−𝜏 𝜀̇(z)dz for all differentiable functions 𝜀. Let L̃ = L̄ −

1N−1 ⋅ l̄T
1 , then the system (6) can be rewritten as:

𝜀̇(t) = −L̃𝜀(t) + L̃∫
t

t−𝜏
𝜀̇(z)dz − L̃e(t) − d ⊗ e1(t)

= −L̃𝜀(t) + L̃∫
t

t−𝜏
[−L̃(𝜀(z − 𝜏) + e(z))

− d ⊗ e1(z)]dz − L̃e(t) − d ⊗ e1(t)
(8)

Then we can get the following solution:

𝜀(t) = e−L̃t𝜀(0) + ∫
t

0
e−L̃(t−s)

{
L̃∫

s

s−𝜏

[
−L̃(𝜀(z − 𝜏)

+e(z)) − d ⊗ e1(z)
]

dz − L̃e(s) − d ⊗ e1(s)
}

ds

(9)

According to Lemma 2, matrix L̃ = L̄ − 1N−1 ⋅ l̄T
1

is positive stable, namely, all the eigenvalues of −L̃ have
negative real parts. Then, from Lemma 3, we can realize
there exist a constant 𝜌 ≥ 1 and 𝛼 > 0 such that ‖e−L̃t‖ ≤
𝜌e−𝛼t; thus,

‖𝜀(t)‖ ≤ 𝜌‖𝜀(0)‖e−𝛼t + 𝜌∫
t

0
e−𝛼(t−s)

{
∫

s

s−𝜏
‖L̃‖ [‖L̃‖

⋅‖𝜀(z − 𝜏)‖ + (‖L̃‖ + ‖d‖)‖e(z)‖] dz

+(‖L̃‖ + ‖d‖)‖e(s)‖} ds

≤ 𝜌‖𝜀(0)‖e−𝛼t + 𝜌∫
t

0
e−𝛼(t−s)

{
∫

s

s−𝜏
‖L̃‖ [‖L̃‖

⋅ ‖𝜀(z − 𝜏)‖ + (‖L̃‖ + ‖d‖) (𝜅1‖𝜀(z − 𝜏)‖
+𝜅2e−𝛾z)] dz + (‖L̃‖ + ‖d‖) (𝜅1‖𝜀(s − 𝜏)‖
+𝜅2e−𝛾s)} ds

= 𝜌‖𝜀(0)‖e−𝛼t + 𝜌∫
t

0
e−𝛼(t−s)

{
∫

s

s−𝜏
‖L̃‖ [‖L̃‖

⋅‖𝜀(z − 𝜏)‖ + 𝜅1(‖L̃‖ + ‖d‖)‖𝜀(z − 𝜏)‖] dz

+𝜅1(‖L̃‖ + ‖d‖)‖𝜀(s − 𝜏)‖} ds + 𝜌𝜒(e−𝛾t

− e−𝛼t).
(10)

where 𝜒 = 𝜅2(‖L̃‖+‖d‖)(‖L̃‖(e𝛾𝜏−1)+𝛾)
𝛾(𝛼−𝛾)

.
In the following, we will prove that

‖𝜀(t)‖ ≤ 𝜌𝜑e−𝛾t, 𝛾 < 𝛼, t ≥ 0, (11)
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where 𝜑 = max
{‖𝜀(0)‖, 𝛾(𝛼−𝛾)𝜒

𝛾(𝛼−𝛾)−𝜌𝜛

}
and 𝜛 is defined

in (14).
One can see that, Inequality (11) is equal to

the following:

‖𝜀(t)‖ < 𝜂𝜌𝜑e−𝛾t, 𝜂 > 1, t ≥ 0. (12)

Using the proof by contradiction, we assume Inequality
(12) is impossible. Then due to the continuity of ‖𝜀(t)‖,
there must exist a time instant t∗ > 0 such that

‖𝜀(t∗)‖ = 𝜂𝜌𝜑e−𝛾t∗ = 𝜓(t∗). (13)

However, from (10) and (12), we obtain that

‖𝜀(t∗)‖ ≤ 𝜌‖𝜀(0)‖e−𝛼t∗ + 𝜌𝜒
(
e−𝛾t∗ − e−𝛼t∗)

+ 𝜌∫
t∗

0
e−𝛼(t

∗−s)
{
∫

s

s−𝜏

[(‖L̃‖2 + 𝜅1‖L̃‖
⋅(‖L̃‖ + ‖d‖)) ‖𝜀(z − 𝜏)‖] dz + 𝜅1

(‖L̃‖
+‖d‖) ‖𝜀(s − 𝜏)‖} ds

< 𝜂𝜌‖𝜀(0)‖e−𝛼t∗ + 𝜂𝜌𝜒
(
e−𝛾t∗ − e−𝛼t∗)

+ 𝜌∫
t∗

0
e−𝛼(t

∗−s)
{
∫

s

s−𝜏

[(‖L̃‖2 + 𝜅1‖L̃‖
⋅(‖L̃‖ + ‖d‖)) 𝜂𝜌𝜑e−𝛾(z−𝜏)

]
dz + 𝜅1

(‖L̃‖
+‖d‖) 𝜂𝜌𝜑e−𝛾(s−𝜏)

}
ds

= 𝜂𝜌‖𝜀(0)‖e−𝛼t∗ + 𝜂𝜌
(
𝜒 + 𝜌𝜑𝜛

𝛾(𝛼 − 𝛾)

)
(e−𝛾t∗

− e−𝛼t∗ ),
(14)

where 𝜛 =
[‖L̃‖2 + 𝜅1‖L̃‖(‖L̃‖ + ‖d‖)] (e2𝛾𝜏 − e𝛾𝜏)

+ 𝛾𝜅1(‖L̃‖ + ‖d‖)e𝛾𝜏 .
Without loss of generality, we analyze two cases

here to show Inequality (12) always holds.

Case 1. 𝜑 = ‖𝜀(0)‖, i.e., ‖𝜀(0)‖ − (
𝜒 + 𝜌𝜑𝜛

𝛾(𝛼−𝛾)

)
> 0. We

have the following derivation:

‖𝜀(t∗)‖ < 𝜂𝜌‖𝜀(0)‖e−𝛼t∗ + 𝜂𝜌‖𝜀(0)‖ (e−𝛾t∗ − e−𝛼t∗)
= 𝜂𝜌‖𝜀(0)‖e−𝛾t∗

= 𝜂𝜌𝜑e−𝛾t∗ = 𝜓(t∗). (15)

Case 2. 𝜑 = 𝛾(𝛼−𝛾)𝜒
𝛾(𝛼−𝛾)−𝜌𝜛

, i.e., ‖𝜀(0)‖ −
(
𝜒 + 𝜌𝜑𝜛

𝛾(𝛼−𝛾)

)
< 0.

We have another derivation:

‖𝜀(t∗)‖ < 𝜂𝜌(𝜒 + 𝜌𝜑𝜛

𝛾(𝛼 − 𝛾)

)(
e−𝛼t∗ + e−𝛾t∗ − e−𝛼t∗)

= 𝜂𝜌
𝛾(𝛼 − 𝛾)𝜒

𝛾(𝛼 − 𝛾) − 𝜌𝜛
e−𝛾t∗

= 𝜂𝜌𝜑e−𝛾t∗ = 𝜓(t∗).
(16)

From derivation (15) and (16), we see that ‖𝜀(t∗)‖ <
𝜓(t∗), which is contradictory with (13). Thus, Inequalities
(12) and (11) hold, which implies the consensus is reached
exponentially with t → ∞.

Next, we begin to discuss the existence of the delay
upper bound. From (11) and (14), we can obtain

𝜒 + 𝜌𝜑𝜛

𝛾(𝛼 − 𝛾)
) < 𝜑.

One can see that the inequality 𝜌𝜑𝜛

𝛾(𝛼−𝛾)
< 𝜑 is satisfied. Let

g(𝜏) = 𝜌𝜛 − 𝛾(𝛼 − 𝛾)
= 𝜌𝛿1e2𝛾𝜏 + 𝜌(𝛿2 − 𝛿1)e𝛾𝜏 + 𝛾2 − 𝛼𝛾,

where 𝛿1 = ‖L̃‖2 + 𝜅1‖L̃‖(‖L̃‖ + ‖d‖), 𝛿2 = 𝛾𝜅1(‖L̃‖
+ ‖d‖). We have

g′(𝜏) = 𝜌𝛿1𝛾(2e2𝛾𝜏 − e𝛾𝜏) + 𝜌𝛿2𝛾e𝛾𝜏 > 0.

Further, when the following is satisfied{
g(0) = 𝜌𝛿2 + 𝛾2 − 𝛼𝛾 < 0

g(∞) = ∞, (17)

there exist unique 𝜏0 such that g(𝜏) < 0 when 𝜏 ∈ [0, 𝜏0).
Then, to guarantee (17) is satisfied, we can solve

𝛽1 <
𝜁

𝜎(𝜁 + 1)
(18)

where 𝜁 = 𝛼−𝛾
𝜌(‖L̃‖+‖d‖) , and letting g(𝜏0) = 0, the following

delay upper bound is obtained

𝜏0 = 1
𝛾

ln
𝛿1 − 𝛿2 +

√
(𝛿2 − 𝛿1)2 − 4𝛿1(𝛾2∕𝜌 − 𝛼𝛾∕𝜌)

2𝛿1
(19)

Remark 2. Here, we should give the interpretation of
the global objective consensus state of an agent net-
work containing a directed spanning tree. Yu and Chen
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investigated the consensus problem of a directed agent
network in [28], from which we can regard a directed
spanning tree as a composition of several strongly con-
nected subgraphs. Then, we can analyze the consensus
problem using the existing methods from strongly con-
nected network topology. According to [28], the global
network objective consensus state is only determined
by the first strongly connected subgraph whose ultimate
consensus state is the initial weighted states average of its
agents.

Definition 2. [29]. If there exists a finite C such that tk+1−
tk = 0 for all k > C, then the Zeno behavior take place.

Generally speaking, Zeno behavior is a phe-
nomenon where there are infinitely many discrete tran-
sitions occurring in a finite time interval. The realis-
tic physical systems are, of course, not Zeno, but the
hybrid model of a physical system may be Zeno, due
to modeling over-abstraction. Once the Zeno behavior
happens, the computer simulations become imprecise
and time-consuming. Thus, the Zeno behavior must be
excluded in model analysis.

Corollary 1. Consider the agent system (4) with the
event-triggered control strategy (5). Assume the commu-
nication topology has a directed spanning tree. Then,
the inter-event times for each agent i = 1, 2,… ,N are
strictly positive.

Proof. We first let

zi

(
ti
ki
, tj

kj

)
=

N∑
j=1

aij

(
xi

(
ti
ki
− 2𝜏

)
− xj

(
tj
kj
− 2𝜏

))
,

(20)

then we take the derivative of ‖ei(t)‖ at time interval t ∈[
ti
ki
, ti

ki+1

)
when ‖ei(t)‖ is continuous:

d
dt
‖ei(t)‖ ≤ ‖ėi(t)‖ = ‖ẋi(t − 𝜏)‖

= ‖zi(ti
ki
, tj

kj
)‖. (21)

Consider the differential equation at time interval
t ∈ [ti

ki
, ti

ki+1
)

⎧⎪⎨⎪⎩
𝜙̇i(t) = ‖zi

(
ti
ki
, tj

kj

)‖
𝜙i

(
ti
ki

)
= ‖ei

(
ti
ki

)‖ = 0,
(22)

then we have

‖ei(t)‖ ≤ 𝜙i(t) = ∫
t

ti
ki

‖zi

(
ti
ki
, tj

kj

)‖d𝜏. (23)

The next event triggering time of agent i is obtained
by finding the minimum time t such that 𝜙i(t) >
𝛽1

Ni

∑
j∈i

‖xj

(
tj
kj

)
− xi

(
ti
ki

)‖ + 𝛽2e−𝛾(t) > 0 before the

consensus is reached. Note that we have to analyze two

cases here, the first case is when ‖zi

(
ti
ki
, tj

kj

)‖ ≠ 0 at the

last update instant ti
ki

. Since 𝜙̇i(t) > 0 and 𝜙i

(
ti
ki

)
= 0,

the minimum time t corresponding to 𝜙i(t) > 0 must be

larger than ti
ki

. The other case is when ‖zi

(
ti
ki
, tj

kj

)‖ =

0 during t ∈
[

ti
ki
, tj

kj

)
, which only happens occasion-

ally. In this case, 𝜙i(t) = 0 and we see Inequality (5)
holds, then the agent i does not generate any events
during that time interval. When agent i receives an

update from its neighbors, then ‖zi

(
ti
ki
, tj

kj

)‖ ≠ 0 and

the first case holds. Therefore, the inter-event times for
each agent i = 1, 2,… ,N are strictly positive, which
implies agent i will not exhibit Zeno triggering behavior.
The proof is complete.

IV. SIMULATIONS

In this section, we provide some simulations to illus-
trate the proposed approach. Consider the information
interactive network with communication graph  given in
Fig. 1, and consider the initial state values of agents are
randomly generated in the interval [−5, 5].

According to Lemma 3 and the topological struc-
ture in Fig. 1, we obtain 𝜌 = 4.5783, 𝛼 = 0.3820.
Then, we set 𝛽2 = 0.2, 𝛾 = 0.01 and calculate 𝛽1 <

0.0018. Letting 𝛽1 = 0.0012, the time delay bound 𝜏0 =
0.0016 is calculated, then a group of simulation results
are obtained.

Fig. 2 shows the evolution of all agents states xi(t).
Fig. 3 shows the piecewise constant control signals ui1(t).
The evolution of measurement error norm of the first
agent is shown in Fig. 4, from which we cannot directly

Fig. 1. The interaction diagraph with 6 agents.
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Fig. 2. The evolution of states xi(t), i = 1, 2,… , 6.
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Fig. 3. The evolution of control signals ui1(t), i = 1, 2,… , 6.

Fig. 4. The evolution of measurement error and threshold.
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t/s
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Fig. 5. Event triggering times of 6 agents.

see the threshold is a piecewise constant function because
the function e−𝛾t is continuous. In Fig. 5, the events of
each agent are marked in time interval [0, 6], from which
we can see that the sampling is sporadic rather than at
every time instant.

V. CONCLUSION

In this paper, we have proposed a novel event trig-
gering function that not only truly avoids continuous
communication but also excludes the Zeno behavior
for event-triggered control in multi-agent systems with
communication delays. Then, we provide the consensus
analysis using an inequality technique instead of the tra-
ditional LMI method and demonstrate that the Zeno
behavior can be excluded. However, the event triggering
mechanism still has many new challenges to overcome in
real and more complicated conditions. Future works will
include extending the proposed approach to interactive
systems with second-order dynamics.
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